БСЭ БСЭ - Большая Советская Энциклопедия (ФИ)
- Название:Большая Советская Энциклопедия (ФИ)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (ФИ) краткое содержание
Большая Советская Энциклопедия (ФИ) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
ЭВМ стали неотъемлемой частью физических исследований и применяются как для обработки экспериментальных данных, так и в теоретических расчётах, особенно тех, которые ранее были неосуществимыми из-за огромной трудоёмкости.
Большое значение как для самой науки, так и для практических применений имеет исследование вещества при экстремальных условиях: при очень низких или очень высоких температурах, сверхвысоком давлении или глубоком вакууме, сверхсильных магнитных полях и т.д.
Высокий и сверхвысокий вакуум создаётся в электронных приборах и ускорителях для того, чтобы избежать столкновений ускоряемых частиц с молекулами газа. Исследование свойств поверхностей и тонких слоев вещества в сверхвысоком вакууме открыло новый раздел Ф. твёрдого тела. Эти исследования очень важны, в частности, в связи с освоением космического пространства.
V. Некоторые нерешенные проблемы физики
Физика элементарных частиц.
Наиболее фундаментальной проблемой Ф. было и остаётся исследование материи на самом глубоком уровне – уровне элементарных частиц. Накоплен огромный экспериментальный материал по взаимодействиям и превращениям элементарных частиц, произвести же теоретическое обобщение этого материала с единой точки зрения пока не удаётся. Либо недостаёт необходимых фактов, либо – идеи, способной пролить свет на проблему строения и взаимодействия элементарных частиц. Остаётся нерешенной задача о теоретическом определении спектра масс элементарных частиц. Возможно, для решения этой проблемы и устранения бесконечностей в квантовой теории поля необходимо введение некоторой фундаментальной длины, которая ограничивала бы применимость обычных представлений о пространстве-времени как о непрерывной сущности. До расстояний порядка 10 -15 см и соответственно времён t ~ l/c ~ 10 -25 сек обычные пространственно-временные соотношения, по-видимому, справедливы, но на меньших расстояниях, возможно, они нарушаются. Делаются попытки введения фундаментальной длины в единой теории поля (Гейзенберг и др.) и в различных вариантах квантования пространства-времени. Однако пока эти попытки не привели к ощутимым результатам.
Не решена задача построения квантовой теории тяготения. Только намечается возможность сведения воедино четырёх фундаментальных взаимодействий.
Астрофизика. Развитие Ф. элементарных частиц и атомного ядра позволило приблизиться к пониманию таких сложных проблем, как эволюция Вселенной на ранних стадиях развития, эволюция звёзд и образование химических элементов. Однако, несмотря на огромные достижения, перед современной астрофизикой стоят и нерешенные проблемы. Остаётся неясным, каково состояние материи при огромных плотностях и давлениях внутри звёзд и «чёрных дыр». Не выяснена физическая природа квазаров и радиогалактик, причины вспышек сверхновых звёзд и появления всплесков g-излучения. Непонятно, почему попытки обнаружения солнечных нейтрино, которые должны рождаться в недрах Солнца при термоядерных реакциях, к успеху не привели (см. Нейтринная астрономия ) . Не выявлен полностью механизм ускорения заряженных частиц (космических лучей) при вспышках сверхновых звёзд и механизм излучения электромагнитных волн пульсарами и т.д. Наконец, положено лишь начало решению проблемы эволюции Вселенной в целом. Что было на ранних стадиях эволюции Вселенной и какова её судьба в дальнейшем? Сменится ли когда-нибудь наблюдаемое расширение Вселенной её сжатием? На все эти вопросы пока ответов нет.
Несомненно, что наиболее фундаментальные проблемы современной Ф. связаны с элементарными частицами и проблемой строения и развития Вселенной. Здесь предстоит открыть новые законы поведения материи в необычных условиях – при сверхмалых пространственно-временных расстояниях в микромире и сверхбольших плотностях в начале расширения Вселенной. Все др. проблемы имеют более частный характер и связаны с поисками путей эффективного использования основных законов для объяснения наблюдаемых явлений и предсказания новых.
Физика ядра.После создания протонно-нейтронной модели ядра был достигнут большой прогресс в понимании структуры атомных ядер, построены различные приближённые ядерные модели. Однако последовательные теории атомного ядра (подобной теории атомных оболочек), позволяющей рассчитать, в частности, энергию связи нуклонов в ядре и уровни энергии ядра, пока нет. Успех в этом направлении может быть достигнут лишь после построения теории сильных взаимодействий.
Экспериментальное исследование взаимодействия нуклонов в ядре – ядерных сил – сопряжено с очень большими трудностями из-за предельно сложного характера этих сил. Они зависят от расстояния между нуклонами, от скоростей нуклонов и ориентаций их спинов.
Значительный интерес представляет возможность экспериментального обнаружения долгоживущих элементов с атомными номерами около 114 и 126 (т. н. островов стабильности), которые предсказываются теорией.
Одна из важнейших задач, которую предстоит решить Ф., – проблема управляемого термоядерного синтеза. В большом масштабе ведутся экспериментальные и теоретические работы по созданию горячей дейтерий-тритиевой плазмы, необходимой для термоядерной реакции. Сов. установки типа «токамак» являются, по-видимому, самыми перспективными в этом отношении. Имеются и др. возможности. В частности, для нагрева крупинок из смеси дейтерия с тритием можно использовать лазерное излучение, электронные или ионные пучки, получаемые в мощных импульсных ускорителях.
Квантовая электроника.Квантовые генераторы дают электромагнитное излучение, уникальное по своим свойствам. Излучение лазера когерентно и может достигать в узком спектральном интервале огромной мощности: 10 12–10 13 вт, причём расходимость светового пучка составляет всего около 10 -4 рад. Напряжённость электрического поля излучения лазера может превышать напряжённость внутриатомного поля.
Создание лазеров вызвало появление и быстрое развитие нового раздела оптики – нелинейной оптики. В сильном лазерном излучении становятся существенными нелинейные эффекты взаимодействия электромагнитной волны со средой. Эти эффекты – перестройка частоты излучения, самофокусировка пучка и др. представляют большой теоретический и практический интерес.
Почти строгая монохроматичность лазерного излучения позволила получить объёмное изображение объектов ( голография ) с помощью интерференции волн.
Лазерное излучение применяют для разделения изотопов, в частности для обогащения урана изотопом 235U, для испарения и сварки металлов в вакууме, в медицине и т.д. Перспективно, по-видимому, применение лазеров для нагрева вещества до температур, при которых возможно осуществление термоядерных реакций. Стоит задача поисков новых применений лазерного излучения, например для связи в космосе.
Читать дальшеИнтервал:
Закладка: