БСЭ БСЭ - Большая Советская Энциклопедия (ФЕ)

Тут можно читать онлайн БСЭ БСЭ - Большая Советская Энциклопедия (ФЕ) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Энциклопедии. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая Советская Энциклопедия (ФЕ)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.88/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

БСЭ БСЭ - Большая Советская Энциклопедия (ФЕ) краткое содержание

Большая Советская Энциклопедия (ФЕ) - описание и краткое содержание, автор БСЭ БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большая Советская Энциклопедия (ФЕ) - читать онлайн бесплатно полную версию (весь текст целиком)

Большая Советская Энциклопедия (ФЕ) - читать книгу онлайн бесплатно, автор БСЭ БСЭ
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

К принципу Ферма: действительный путь света соответствует экстремальному времени распространения.

Если зеркало имеет форму эллипсоида вращения, а свет распространяется от одного его фокуса Р к другому Q (причём путь без отражения невозможен), то оптическая длина пути луча PO' + O'Q по свойствам эллипсоида равна всем остальным возможным, например PO'' + О'' Q ; если на пути между теми же точками свет отражается от зеркала меньшей, чем у эллипсоида, кривизны ( MM ) , реализуется минимальный путь, если же большей (зеркало NN ) максимальный. Условие экстремальности оптической длины пути сводится к требованию, чтобы была равна нулю вариация от интеграла Большая Советская Энциклопедия ФЕ - изображение 137 (см. Вариационное исчисление ), где А и В – точки, между которыми распространяется свет. Это выражение и представляет собой математическую формулировку Ф. п.

В волновой теории света Ф. п. представляет собой предельный случай Гюйгенса – Френеля принципа и применим, когда можно пренебречь дифракцией света (когда длина световой волны достаточно мала по сравнению с характерными для задачи размерами): рассматривая лучи как нормали к волновым поверхностям, легко показать, что при всяком распространении света оптической длины их путей будут иметь экстремальные значения. Во всех случаях, когда необходимо учитывать дифракцию, Ф. п. перестаёт быть применимым.

Лит.: Fermat P. de, CEuvres, t. 1–4, P., 1891–1912; Ландсберг Г. С., Оптика, 5 изд., М., 1976 (Общий курс физики); Крауфорд Ф., Волны, М., 1974 (Берклеевский курс физики, т. 3); Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973.

А. П. Гагарин.

К принципу Ферма действительный путь света соответствует экстремальному - фото 138

К принципу Ферма: действительный путь света соответствует экстремальному времени распространения.

Ферма Пьер

Ферма'(Fermat) Пьер (17.8.1601, Бомон-де-Ломань, – 12.1.1665, Кастр), французский математик. По профессии юрист: с 1631 был советником парламента в Тулузе. Автор ряда выдающихся работ, большинство из которых было издано после смерти Ф. его сыном, – «Различные сочинения» (1679); при жизни Ф. полученные им результаты становились известны учёным благодаря переписке и личному общению.

Ф. является одним из создателей теории чисел, где с его именем связаны 2 знаменитые теоремы: Ферма великая теорема и Ферма малая теорема. В области геометрии Ф. в более систематической форме, чем Р. Декарт, развил метод координат, дав уравнения прямой и линий второго порядка и наметив доказательство положения о том, что все кривые второго порядка – конического сечения. В области метода бесконечно малых систематически изучил процесс дифференцирования, дал общий закон дифференцирования степени и применил этот закон к дифференцированию дробных степеней. В подготовке современных методов дифференциального исчисления большое значение имело создание им правила нахождения экстремумов. Ф. дал общее доказательство правильности закона интегрирования степени, подмеченного на частных случаях уже ранее. Он распространил его и на случай дробных и отрицательных степеней. В трудах Ф., таким образом, получили систематическое развитие оба основных процесса метода бесконечно малых, однако он, как и его современники, прошёл мимо связи между операциями дифференцирования и интегрирования. Эта связь была установлена несколько позднее (в систематической форме) Г. Лейбницем и И. Ньютоном. Своими работами Ф. оказал большое влияние на дальнейшее развитие математики. В области физики с именем Ф. связано установление основного принципа геометрической оптики (см. Ферма принцип ) .

Соч.: CEuvres, t. 1–4, P., 1891–1912.

Лит.: Бурбаки Н., Элементы математики, [кн. 8]. Очерки по истории математики, пер. с франц., М., 1963 [лит.]; История математики с древнейших времён до начала XIX столетия, т, 2, М., 1970.

П Ферма Ферма технич Фермафранц ferme от лат firmus крепкий - фото 139

П. Ферма.

Ферма (технич.)

Ферма'(франц. ferme, от лат. firmus – крепкий, прочный), несущая конструкция, состоящая из прямолинейных стержней, узловые соединения которых при расчёте условно принимаются шарнирными. Ф. применяют главным образом в строительстве (покрытия зданий, пролётные строения мостов, мачты, опоры линий электропередачи, гидротехнические затворы и др.), а также в качестве несущих конструкций машин и механизмов. По виду материала различают металлические, железобетонные, деревянные и комбинированные (например, металлодеревянные) Ф. Тип Ф. и её очертания ( рис. ) определяются назначением здания или сооружения, видом покрытия, способом опирания Ф. и т.д. Узлы Ф., хотя и считаются шарнирными, практически обладают той или иной степенью жёсткости. При проектировании Ф., как правило, обеспечивается узловое приложение внешней нагрузки (например, прогоны покрытия здания опираются на Ф. в узлах верхнего пояса, балки подвесных кранов крепятся к узлам нижнего пояса и т.д.). Допущения о шарнирном соединении узлов и узловом приложении нагрузки позволяют учитывать при расчёте Ф. только осевые продольные усилия в стержнях (при этом в поперечных сечениях стержней возникают равномерно-распределённые напряжения, позволяющие наиболее эффективно использовать материал). Усилия в стержнях статически определимых плоских Ф. (см. Статически определимая система ) определяют из уравнений статики, пространственных – как правило, путём расчленения на плоские. Статически неопределимые Ф. (см. Статически неопределимая система ) рассчитывают при помощи уравнений метода сил (см. Строительная механика ) , в которых коэффициенты при неизвестных (перемещения) определяют с учётом действия только нормальных усилий в элементах Ф. При расчёте Ф. на подвижные нагрузки используют т. н. линии влияния.

Лит. см. при статьях Строительная механика , Металлические конструкции , Железобетонные конструкции и изделия , Деревянные конструкции .

Л. В. Касабьян.

Классификация ферм по типам решётки а балочная раскосная б балочная с - фото 140

Классификация ферм по типам решётки: а — балочная раскосная; б — балочная с треугольной решёткой; в — балочно-консольная с треугольной решёткой и дополнительными стойками; г — консольная полураскосная; д — консольная двухраскосная; е — балочная двухрешётчатая; 1 — верхний пояс; 2 — нижний пояс; 3 — раскос; 4 — стойка.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая Советская Энциклопедия (ФЕ) отзывы


Отзывы читателей о книге Большая Советская Энциклопедия (ФЕ), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x