БСЭ БСЭ - Большая Советская Энциклопедия (ЧЕ)

Тут можно читать онлайн БСЭ БСЭ - Большая Советская Энциклопедия (ЧЕ) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Энциклопедии. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая Советская Энциклопедия (ЧЕ)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.33/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

БСЭ БСЭ - Большая Советская Энциклопедия (ЧЕ) краткое содержание

Большая Советская Энциклопедия (ЧЕ) - описание и краткое содержание, автор БСЭ БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большая Советская Энциклопедия (ЧЕ) - читать онлайн бесплатно полную версию (весь текст целиком)

Большая Советская Энциклопедия (ЧЕ) - читать книгу онлайн бесплатно, автор БСЭ БСЭ
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Наиболее многочисленны работы Ч. в области математического анализа. Ему была, в частности, посвящена диссертация на право чтения лекций, в которой Ч. исследовал интегрируемость некоторых иррациональных выражений в алгебраических функциях и логарифмах. Интегрированию алгебраических функций Ч. посвятил также ряд других работ. В одной из них (1853) была получена известная теорема об условиях интегрируемости в элементарных функциях дифференциального бинома. Важное направление исследований по математическому анализу составляют его работы по построению общей теории ортогональных многочленов. Поводом к её созданию явилось параболическое интерполирование способом наименьших квадратов. К этому же кругу идей примыкают исследования Ч. по проблеме моментов и по квадратурным формулам. Имея в виду сокращение вычислений, Ч. предложил (1873) рассматривать квадратурные формулы с равными коэффициентами (см. Приближённое интегрирование ). Исследования по квадратурным формулам и по теории интерполирования были тесно связаны с задачами, которые ставились перед Ч. в артиллерийском отделении военно-учёного комитета.

Ч. — основоположник т. н. конструктивной теории функций, основной составляющий элемент которой — теория наилучшего приближения функций (см. Приближение и интерполирование функций , Чебышева многочлены ) . Простейшая постановка задачи Ч. такова (1854): дана непрерывная функция f ( x ); среди всех многочленов степени n найти такой Р ( х ), чтобы в данном промежутке [ a , b ] выражение

Большая Советская Энциклопедия ЧЕ - изображение 4

было возможно меньшим.

Помимо указанного равномерного наилучшего приближения, Ч. рассматривал также квадратическое приближение, а помимо приближений алгебраическими многочленами, — приближение посредством тригонометрических полиномов и с помощью рациональных функций.

Теория машин и механизмов была одной из тех дисциплин, которыми Ч. систематически интересовался всю жизнь. Особенно многочисленны его работы, посвященные синтезу шарнирных механизмов, в частности параллелограмму Уатта (1861, 1869, 1871, 1879 и др.). Большое внимание он уделял конструированию и изготовлению конкретных механизмов. Интересны, в частности, его стопоходящая машина, имитирующая движение животного при ходьбе, а также автоматический арифмометр. Изучение параллелограмма Уатта и стремление усовершенствовать его натолкнуло Ч. на постановку задачи о наилучшем приближении функций (см. выше). К прикладным работам Ч. относится также оригинальное исследование (1856), где он поставил задачу найти такую картографическую проекцию данной страны, сохраняющую подобие в малых частях, чтобы наибольшее различие масштабов в разных точках карты было наименьшим. Ч. высказал без доказательства мнение, что для этого отображение должно сохранять на границе постоянство масштаба, что впоследствии и было доказано Д. А. Граве.

Ч. оставил яркий след в развитии математики и собственными исследованиями, и постановкой соответствующих вопросов перед молодыми учёными. Так, по его совету А. М. Ляпунов начал цикл исследований по теории фигур равновесия вращающейся жидкости, частицы которой притягиваются по закону всемирного тяготения.

Труды Ч. ещё при жизни нашли широкое признание не только в России, но и за границей; он был избран член Берлинской АН (1871), Болонской АН (1873), Парижской АН (1874; член-корреспондент 1860), Лондонского королевского общества (1877), Шведской АН (1893) и почётным член многих других русских и иностранных научных обществ, академий и университетов.

В честь Ч. АН СССР учредила в 1944 премию за лучшие исследования по математике.

Соч.: Сочинения, т. 1—2, СПБ. 1899—1907; Полн. собр. соч., т. 1—5, М.—Л., 1944—1951 (лит.); Избр. труды, М., 1955.

Лит.: Ляпунов А. М., Пафнутий Львович Чебышев, в кн.: Чебышев П. Л., Избр. математические труды, М.—Л., 1946; Стеклов В. А., Теория и практика в исследованиях Чебышева. Речь..., П., 1921; Крылов А. Н., Пафнутий Львович Чебышев. Биографический очерк, М.—Л., 1944; Научное наследие П. Л. Чебышева, в. 1—2, М.—Л., 1945; Делоне Б. Н., Петербургская школа теории чисел, М.—Л., 1947 (лит.).

Б. В. Гнеденко.

П Л Чебышев Чебышева многочлены Чебышева многочлены 1 Ч м 1го - фото 5

П. Л. Чебышев.

Чебышева многочлены

Чебыше'ва многочле'ны,

1) Ч. м. 1-го рода — специальная система многочленов последовательно возрастающих степеней. Для n = 0, 1, 2,... определяются формулой:

В частности Т 0 1 T 1 х T 2 2 x 2¾1 T 3 4 x 3¾ 3 x T 4 8 x 4 ¾ 8 x - фото 6

В частности, Т 0 = 1; T 1= х ; T 2= 2 x 2¾1; T 3= 4 x 3¾ 3 x ; T 4= 8 x 4 ¾ 8 x 2+ 1. Ч. м. T n ( x ) ортогональны (см. Ортогональные многочлены ) на отрезке [—1; + 1] относительно веса (1 — x 2) ¾1/2. Дифференциальное уравнение:

(1 — x 2) у"ху + n 2 у = 0 .

Рекуррентная формула: T n+ 1( x ) = 2xTn ( х ) - T n ¾1( x ) .

Ч. м. 1-го рода являются частным случаем Якоби многочленовP n ( ab)( x ) :

2 Ч м 2го рода U n x ортогональная на отрезке 1 1 - фото 7.

2) Ч. м. 2-го рода U n ( x ) ортогональная на отрезке [—1; + 1] относительно веса (1 — x 2) 1/2система многочленов, связанная с Ч. м. 1-го рода, например рекуррентным соотношением:

(1 — x 2) U n ¾1( х ) = xTn ( х ) ¾ T n+ 1( х ) .

Лит.: Чебышев П. Л., Полн. собр. соч., т. 2—3, М.—Л., 1947—48; Сеге Г., Ортогональные многочлены, пер. с англ., М., 1962.

Чебышева неравенство

Чебыше'ва нера'венство,

1) одно из основных неравенств для монотонных последовательностей или функций. В случае конечных последовательностей

Большая Советская Энциклопедия ЧЕ - изображение 8

и

Большая Советская Энциклопедия ЧЕ - изображение 9

оно имеет вид:

а в интегральной форме ¾ вид где f x ³ 0 g x ³ 0 и обе функции - фото 10

а в интегральной форме ¾ вид:

где f x ³ 0 g x ³ 0 и обе функции либо убывают либо возрастают Ч - фото 11,

где f ( x ) ³ 0, g ( x ) ³ 0 и обе функции либо убывают, либо возрастают. Ч. н. установлено П. Л. Чебышевым (1882).

2) Неравенство, дающее оценку вероятности того, что отклонение случайной величины от её математического ожидания превзойдёт некоторую заданную границу. Пусть x — какая-либо случайная величина, Ex = a — её математическое ожидание, а Dx = s 2¾ её дисперсия. Тогда Ч. н. утверждает, что вероятность неравенства | x ¾ ak s не превосходит величины 1 /k 2 . Если x сумма независимых случайных величин, то при некоторых дополнительных ограничениях оценка 1 /k 2может быть заменена оценкой

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая Советская Энциклопедия (ЧЕ) отзывы


Отзывы читателей о книге Большая Советская Энциклопедия (ЧЕ), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий