БСЭ БСЭ - Большая Советская Энциклопедия (ЭЛ)
- Название:Большая Советская Энциклопедия (ЭЛ)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (ЭЛ) краткое содержание
Большая Советская Энциклопедия (ЭЛ) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Активное сопротивление элемента электрической цепи зависит как от формы элемента и его размеров, так и от материала, из которого он изготовлен. Для однородного по составу элемента в виде бруска, пластины, трубки или проволоки при постоянном его сечении S и длине l, , где r — удельное сопротивление, характеризующее материал элемента; измеряется в ом · м, ом · см или
. По удельному сопротивлению все вещества делятся на проводники (см. Металлы, Проводники ) , полупроводники (см. Полупроводники, Полупроводниковые материалы ) , изоляторы (см. Диэлектрики, Электроизоляционные материалы ) . При очень низких температурах Э. с. некоторых металлов и сплавов падает до нуля (см. Сверхпроводимость, Сверхпроводники ) . Часто вместо удельного сопротивления, особенно при рассмотрении физической природы Э. с., вводят величину, обратную удельному Э. с.,— электропроводность.
2) Термин «Э. с.» в обиходе часто употребляют применительно к резистору или какому-либо другому элементу, присоединяемому к электрической цепи, например для ограничения или регулирования силы тока в ней (см. Шунт, Реостат, Потенциометр ) .
Лит. см. при ст. Электропроводность.
Электричество
Электри'чество,совокупность явлений, обусловленных существованием, движением и взаимодействием электрически заряженных тел или частиц. Взаимодействие электрических зарядов осуществляется с помощью электромагнитного поля (в случае неподвижных электрических зарядов — электростатического поля; см. Электростатика ) . Движущиеся заряды ( электрический ток ) наряду с электрическим возбуждают и магнитное поле, т. е. порождают электромагнитное поле, посредством которого осуществляется электромагнитное взаимодействие (учение о магнетизме, т. о., является составной частью общего учения об Э.). Электромагнитные явления описываются классической электродинамикой, в основе которой лежат Максвелла уравнения.
Законы классической теории Э. охватывают огромную совокупность электромагнитных процессов. Среди 4 типов взаимодействий (электромагнитных, гравитационных, сильных и слабых), существующих в природе, электромагнитные занимают первое место по широте и разнообразию проявлений. Это связано с тем, что все тела построены из электрически заряженных частиц противоположных знаков, взаимодействия между которыми, с одной стороны, на много порядков интенсивнее гравитационных и слабых, а с другой — являются дальнодействующими в отличие от сильных взаимодействий. Строение атомных оболочек, сцепление атомов в молекулы (химические силы) и образование конденсированного вещества определяются электромагнитным взаимодействием.
Историческая справка.Простейшие электрические и магнитные явления известны ещё с глубокой древности. Были найдены минералы, притягивающие кусочки железа, а также обнаружено, что янтарь (греч. электрон, elektron, отсюда термин Э.), потёртый о шерсть, притягивает лёгкие предметы (электризация трением). Однако лишь в 1600 У. Гильберт впервые установил различие между электрическими и магнитными явлениями. Он открыл существование магнитных полюсов и неотделимость их друг от друга, а также установил, что земной шар — гигантский магнит.
В 17 — 1-й половине 18 вв. проводились многочисленные опыты с наэлектризованными телами, были построены первые электростатические машины, основанные на электризации трением, установлено существование электрических зарядов двух родов (Ш. Дюфе ) , обнаружена электропроводность металлов (английский учёный С. Грей). С изобретением первого конденсатора — лейденской банки (1745) — появилась возможность накапливать большие электрические заряды. В 1747—53 Б. Франклин изложил первую последовательную теорию электрических явлений, окончательно установил электрическую природу молнии и изобрёл молниеотвод.
Во 2-й половине 18 в. началось количественное изучение электрических и магнитных явлений. Появились первые измерительные приборы — электроскопы различных конструкций, электрометры. Г. Кавендиш (1773) и Ш. Кулон (1785) экспериментально установили закон взаимодействия неподвижных точечных электрических зарядов (работы Кавендиша были опубликованы лишь в 1879). Этот основной закон электростатики ( Кулона закон ) впервые позволил создать метод измерения электрических зарядов по силам взаимодействия между ними. Кулон установил также закон взаимодействия между полюсами длинных магнитов и ввёл понятие о магнитных зарядах, сосредоточенных на концах магнитов.
Следующий этап в развитии науки об Э. связан с открытием в конце 18 в. Л. Гальвани «животного электричества» и работами А. Вольты, который правильно истолковал опыты Гальвани присутствием в замкнутой цепи 2 разнородных металлов в жидкости и изобрёл первый источник электрического тока — гальванический элемент (т. н. вольтов столб, 1800), создающий непрерывный (постоянный) ток в течение длительного времени. В 1802 В. В. Петров, построив гальванический элемент значительно большей мощности, открыл электрическую дугу, исследовал её свойства и указал на возможность применений её для освещения, а также для плавления и сварки металлов. Г. Дэви электролизом водных растворов щелочей получил (1807) неизвестные ранее металлы — натрий и калий. Дж. П. Джоуль установил (1841), что количество теплоты, выделяемой в проводнике электрическим током, пропорционально квадрату силы тока; этот закон был обоснован (1842) точными экспериментами Э. Х. Ленца (закон Джоуля — Ленца). Г. Ом установил (1826) количественную зависимость электрического тока от напряжения в цепи. К. ф. Гаусс сформулировал (1830) основную теорему электростатики (см. Гаусса теорема ) .
Наиболее фундаментальное открытие было сделано Х. Эрстедом в 1820; он обнаружил действие электрического тока на магнитную стрелку — явление, свидетельствовавшее о связи между электричеством и магнетизмом. Вслед за этим в том же году А. М. Ампер установил закон взаимодействия электрических токов ( Ампера закон ) . Он показал также, что свойства постоянных магнитов могут быть объяснены на основе предположения о том, что в молекулах намагниченных тел циркулируют постоянные электрические токи (молекулярные токи). Т. о., согласно Амперу, все магнитные явления сводятся к взаимодействиям токов, магнитных же зарядов не существует. Со времени открытий Эрстеда и Ампера учение о магнетизме сделалось составной частью учения об Э.
Читать дальшеИнтервал:
Закладка: