Джим Брейтот - 101 ключевая идея: Астрономия
- Название:101 ключевая идея: Астрономия
- Автор:
- Жанр:
- Издательство:ФАИР- ПРЕСС
- Год:2002
- Город:Москва
- ISBN:5–8183–0382–9; 0–340–78214–5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джим Брейтот - 101 ключевая идея: Астрономия краткое содержание
Астрономия — сплав физики, математики и бездонной красоты звездного неба — не одно столетие вдохновляла человечество на осознание своего места во Вселенной, на поиски и открытия. Эта обширная область науки обладает собственным языком, который, однако, может освоить и человек, не имеющий специального образования. В этой книге в доступной форме дано краткое описание основополагающих идей астрономии, а также современные принципы и факты, необходимые для всех, кто хочет узнать как можно больше о ночном небе. Вы узнаете о черных дырах и гравитационных линзах, о пульсарах, квазарах и многом другом, что поражает воображение, заставляя людей с пристальным интересом всматриваться в небеса. Статьи расположены в алфавитном порядке.
Книга предназначена для широкого круга читателей, а также для учащихся школ и вузов.
101 ключевая идея: Астрономия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
После публикации "Начал" в 1687 году Ньютон стал ведущим ученым своего поколения, хотя не уклонился от ожесточенной дискуссии с Лейбницем, который утверждал, что первым изобрел дифференциальное исчисление. В университете карьера Ньютона не получила должного развития, так как он принадлежал к унитарной церкви и не верил в Святую Троицу. В 1695 году Ньютон был назначен смотрителем, а в 1699 году — директором Монетного двора, где посвятил свои таланты проведению денежной реформы. Научные заслуги Ньютона были признаны в 1703 году, когда он был избран президентом Лондонского королевского общества и возведен в рыцарское достоинство. [24] Следует добавить, что членом Лондонского королевского общества Ньютон был избран еще в 1672 году.
См. также статьи "Галилей", "Законы Кеплера", "Закон тяготения Ньютона".
ОКУЛЯР
Окуляр, одна из основных частей визуального телескопа, предназначен для того, чтобы направлять свет, попадающий на линзы телескопа от отдаленного объекта, в глаз наблюдателя, а также позволять наблюдателю видеть увеличенный образ объекта, сформированный объективом.
Увеличивающая сила телескопа равна отношению фокусной длины объектива к фокусной длине окуляра. Чем короче фокусная длина окуляра, тем выше сила увеличения телескопа. Ее можно изменять, пользуясь окулярами с разным фокусным расстоянием. Это полезно при наблюдении Луны или планет, так как они не являются точечными объектами и при наблюдении в телескоп кажутся крупнее. Поскольку при возрастании силы увеличения поле зрения уменьшается, маломощными окулярами пользуются для общих наблюдений, где желательно иметь широкое поле зрения. Когда определено местоположение интересующего объекта (например, планеты), для наблюдения более подробного изображения можно поставить более мощный окуляр.
Диаметр линзы окуляра обычно немного превосходит 8 мм, что примерно равно диаметру зрачка человеческого глаза в темноте. [25] У человека диаметр зрачка колеблется в зависимости от освещенности от 1,5 до 7,5 мм.
Свет от отдаленного объекта попадает в телескоп и проходит через окуляр, достигая глаза наблюдателя. Окуляр обычно представляет собой сочетание двух линз, расположенных на расстоянии немного меньшем или равном среднему двух фокусных расстояний. Такое расположение устраняет хроматическую аберрацию — разделение белого света на цвета спектра, которое искажает наблюдаемый образ. Высококачественные окуляры также устраняют сферическую аберрацию, искажение образа, вызванное тем, что внешняя часть линзы фокусирует цвет немного иначе, чем центральная часть.
Телескоп, снабженный фотоаппаратом, позволяет получать образы с длительной экспозицией и наблюдать объекты, слишком слабые для непосредственного визуального наблюдения в телескоп. Для создания реального образа на фотопленке положение окуляра регулируется.
См. также статьи "Увеличение", "Телескопы".
ОРБИТЫ ПЛАНЕТ
Орбитой планеты называется ее путь вокруг Солнца. Планеты движутся вокруг Солнца в одном направлении и почти в одной плоскости друг с другом. Сила тяготения заставляет планету или комету вращаться вокруг Солнца по одной и той же орбите. В целом орбиты планет и комет имеют эллиптическую форму, где Солнце расположено в одной из двух фокальных точек эллипса. Впервые этот факт был установлен в XVI веке в результате наблюдений Иоганна Кеплера. К счастью, орбита Земли имеет почти круглую форму; в противном случае наша планета испытывала бы гораздо более резкие ежегодные колебания температур. Плутон вращается по сильно эллиптической орбите, которая в течение определенного времени выводит его ближе к Солнцу, чем соседнюю планету Нептун. (На рисунке показано, как нарисовать эллипс.)
Орбита планеты характеризуется главным образом ее средним радиусом и периодом обращения. Средний радиус составляет среднюю арифметическую величину между максимальным и минимальным диаметром орбиты. Период обращения планеты — это время, которое требуется для того, чтобы она совершила полный оборот вокруг Солнца. Чем дальше планета находится от Солнца, тем продолжительнее период обращения. На основании наблюдений Кеплер пришел к выводу, что квадрат периода обращения планеты пропорционален кубу среднего радиуса ее орбиты. Эта формулировка известна как третий закон Кеплера. К примеру, Сатурн имеет период обращения 29,4 года и средний радиус орбиты в 9,5 раз больше, чем у Земли. Вы можете сами проверить, что 29,4 2= 9,5 3с точностью до 1 %. Третий закон Кеплера можно объяснить, пользуясь ньютоновским законом тяготения и законами движения.
См. также статьи "Законы Кеплера", "Планеты".
ПЕРЕМЕННЫЕ ЗВЕЗДЫ
Переменной называется звезда, блеск которой претерпевает регулярные изменения. Двойная звезда затменно-переменного типа временно изменяет свой блеск каждый раз, когда один из ее компонентов затмевает другой.
Переменные звезды, блеск которых изменяется без периодического затухания, характерного для двойных звезд затменно-переменного типа, называются настоящими переменными, или пульсирующими, так как изменения блеска обусловлены внутренними процессами, происходящими в недрах звезды. К примеру, блеск звезды Мира в созвездии Кита постепенно изменяется от второй звездной величины до десятой звездной величины и обратно за 131 сутки.
Период изменения блеска цефеид составляет от суток до более 100 суток; при этом изменение блеска ненамного превышает одну звездную величину. Блеск цефеиды усиливается быстрее, чем ослабевает. Известно, что цефеиды являются пульсирующими звездами, так как линии их спектра претерпевают регулярный сдвиг то в одну, то в другую сторону. Период изменения блеска цефеиды зависит от ее абсолютной звездной величины, поэтому цефеиды используются для определения расстояния до объекта в космосе.
Звезды типа RR Лиры [26] Для обозначения переменные звезд используют латинские буквы1 с указанием созвездия, в котором звезда расположена. В пределах одного созвездия переменные звездам последовательно присваивают одну латинскую букву, комбинацию из двух букв или букву V с номером.
изменяют свой блеск так же, как цефеиды, и тоже считаются пульсирующими звездами, однако их период составляет несколько часов, а не суток, и они принадлежат к звездам классов А и F, в то время как цефеиды принадлежат к звездам классов G и М. Звезды типа RR Лиры встречаются главным образом в шаровых звездных скоплениях.
Звезды типа RV Тельца имеют период изменения блеска от 30 до 150 суток. Усиление блеска у таких звезд происходит плавно, а ослабление — скачкообразно. Блеск звезд типа Т Тельца изменяется хаотично в пределах нескольких звездных величин. Такие звезды встречаются только в газопылевых облаках; скорее всего, это означает, что они — очень молодые звезды.
Читать дальшеИнтервал:
Закладка: