Станислав Зигуненко - 100 великих рекордов авиации и космонавтики
- Название:100 великих рекордов авиации и космонавтики
- Автор:
- Жанр:
- Издательство:Вече
- Год:2008
- Город:Москва
- ISBN:978-5-9533-1925-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Станислав Зигуненко - 100 великих рекордов авиации и космонавтики краткое содержание
Эта книга — о том, как человек, вопреки своей биологической природе, не давшей ему крыльев, в дерзновенных исканиях сумел подняться над землей. Легендарные воздухоплаватели древности и изобретатели аэростатов, герои, пытавшиеся на хрупком дирижабле достичь Северного полюса, первые пилоты, — без их подвига не было бы нынешнего триумфа авиации и космонавтики. Читатель узнает, как бесстрашные летчики-стратонавты еще до полета Юрия Гагарина вышли на границу с космосом, какие легенды окружают авиацию Третьего рейха и историю первых космонавтов, какими будут космические станции и корабли в уже наступающую эпоху межпланетных перелетов.
100 великих рекордов авиации и космонавтики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В ходе своих исследований британцы разработали дополнительные средства, которые могут улучшить аэродинамические характеристики самолета с обратной стреловидностью и уменьшить его заметность на экране радара. В частности, предложены подвижные кромки крыла, V-образная форма воздухозаборников и другие новшества.
По их мнению, полностью подвижные кромки крыла улучшают его механизацию и управляемость самолета. «При грамотно составленной программе управления полетом можно добиться, что с увеличением угла атаки концы плоскостей будут отклоняться вниз, препятствуя срыву воздушного потока с плоскости», — утверждают конструкторы. Кроме того, крыло типа «чайка» позволяет скрыть от радаров противника подвешенные под крылом ракеты и бомбы, уменьшая тем самым общую радиозаметность самолета.
Подобные самолеты западные специалисты, как и наши, предназначают прежде всего для палубной авиации. Только вот беда: пока идут столь длительные доводки истребителей пятого поколения, может оказаться, что надобность в них практически отпадет. И в воздух поднимутся летательные аппараты шестого поколения, на которых вообще не будет пилотской кабины.
А у беспилотных летательных аппаратов совсем иная стратегия применения. И понадобится ли им крыло обратной стреловидности, еще вопрос. Так что, возможно, «Беркут» и его коллеги так и останутся в истории авиации своего рода экзотикой, рекордсменами своего времени.
В полете — «ЭКИП»…
В нашей стране вот уже второй десяток лет создается принципиально новый летательный аппарат, которому для приземления и взлета не требуются дорогостоящие бетонные взлетно-посадочные полосы.
Между тем современные самолеты, как уже говорилось, все тяжелеют. «Антей», к примеру, берет на борт 80 т груза, но и сам весит 450 т. Эксплуатация таких гигантов связана с немалыми трудностями. Их колеса оказывают столь большое удельное давление на грунт, что взлетно-посадочные полосы приходится покрывать слоем прочнейшего бетона, толщина которого приближается к метру.
В результате стоимость строительства и обслуживания подобных сооружений составляет более половины всех расходов на тяжелую авиацию. Впрочем, дело не только в деньгах. Серьезную озабоченность вызывает и безопасность полетов. Случись с такой машиной что-либо в воздухе вдали от аэродрома — это верная катастрофа: ведь приземлиться он может только на бетонную полосу.

Именно поэтому давно уже предпринимаются попытки создать крупные машины, способные садиться на обычный грунт. Конструкторы прибегают к разным хитростям. К примеру, предлагают заменить колесные шасси посадочными устройствами на принципе воздушной подушки. По идее такое шасси позволяет сажать тяжелый самолет даже на вспаханное поле.
Впервые такая машина была испытана в нашей стране еще в 1940 году. Она могла садиться чуть ли не на болото, но размеры и вес посадочного устройства, заменившего колеса, оказались неприемлемо велики. От затеи пришлось отказаться.
Серьезна для авиации и еще одна проблема — минимального веса машины при достаточной ее прочности. У самолетов традиционного типа есть ахиллесова пята — концентрация сил в корнях крыльев — местах, где они соединяются с фюзеляжем. Освободиться от этих сил пытались неоднократно. Еще в 1918 году немецкий авиаконструктор X. Юнкерс получил патент на «свободнонесущее крыло», в котором размещались двигатели, топливо, пассажиры и грузы. Их вес равномерно распределялся по длине крыла, и его удавалось сделать достаточно легким. Фюзеляжже заменяли балки, несущие только хвостовое оперение, необходимое для придания машине устойчивости.
Наш авиаконструктор Б. И. Черановский в 1920 году предложил пассажирский самолет, представлявший собой «летающее крыло». В плане оно имело форму параболы, что позволяло надеяться на устойчивый полет без хвостового оперения и даже без намека на фюзеляж. Ожидалось, что равномерное распределение нагрузок и гладкая, без выступающих элементов обшивка обеспечат прекрасную аэродинамику машины. Но эксперименты на моделях показали — толстое и широкое крыло малого удлинения имеет очень высокое лобовое сопротивление и плохую устойчивость. Так что проект остался не осуществленным.
Все эти проблемы с блеском решены в новом летательном аппарате, основы конструкции которого были заложены профессором Н. Л. Щукиным еще три десятка лет тому назад.
Прежде чем перейти непосредственно к рассказу о новом летательном аппарате, вспомним, что еще в XVIII веке французский математик Ж.Л. д'Аламбер теоретически обосновал парадоксальное утверждение, которое в упрощенном виде звучит так: при отсутствии сил вязкости сопротивление движению тела в несжимаемой жидкости равно нулю. При скорости, близкой к половине звуковой, сжимаемость воздуха почти не принимает участия в создании сопротивления, а вот про вязкость этого не скажешь. Тут она — корень зла.
На муху, севшую на мед, вязкость оказывает непосредственное силовое воздействие. По отношению к крупному самолету, летящему с дозвуковой скоростью, вязкость выполняет функции в основном «управленческие». То есть она перераспределяет обтекающие его потоки воздуха, и вступающие в действие силы инерции воздушных масс начинают создавать мощное сопротивление. Подчеркнем еще раз, что чисто вязкостные силы составляют весьма малую часть этого сопротивления. Например, у самолета с шириной крыла 2 м и летящего со скоростью 600 км/ч силы вязкости в 20 млн раз меньше сил инерции! Но вязкость, как мы уже упомянули, выполняет роль детонатора, разрушающего стройный поток воздушной среды.
И тут напрашивается мысль — поскольку уничтожить вязкость воздуха нельзя, не стоит ли попытаться за счет работы двигателей самолета скомпенсировать ее действие? Причем сделать это надо очень тонко, в таком месте, где силы «зла» только начинают свою подрывную работу.
Более тридцати лет назад эту идею успешно осуществил в эксперименте наш ученый. Рассмотрим его открытие применительно к толстому крылу малого удлинения. Тут основные беды происходят из-за отрыва потока с образованием множества больших и малых вихрей на задней верхней поверхности. Именно здесь и установил Щукин особую систему щелей. Работают они попарно. В переднюю щель компрессором подается воздух, струя которого выходит на поверхность крыла и, описав дугу, засасывается в заднюю щель. И так в каждой паре.
В результате сверху на крыле образуется движущаяся воздушная пелена, прилегающая к его поверхности. Соприкасаясь с ней, набегающий поток не испытывает торможения, и на значительной части крыла возникает подъемная сила. В итоге аэродинамическое качество (отношение подъемной силы крыла к создаваемому сопротивлению) с 3–4 поднимается до 15–18!
Читать дальшеИнтервал:
Закладка: