Владислав Пристинский - 100 знаменитых изобретений

Тут можно читать онлайн Владислав Пристинский - 100 знаменитых изобретений - бесплатно ознакомительный отрывок. Жанр: Энциклопедии, издательство Фолио, год 2006. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Владислав Пристинский - 100 знаменитых изобретений краткое содержание

100 знаменитых изобретений - описание и краткое содержание, автор Владислав Пристинский, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Вся история человечества – это непрерывная цепь изобретений. И из этой цепи нельзя вынуть ни одного звена – иначе она вся разрушится. . В этой книге рассказывается о ста знаменитых изобретениях цивилизации – тех, без которых на планете Земля не было бы жизни. Так что цепь изобретений, о которой упоминалось, не прерывается, и не прервется никогда – она будет лишь удлиняться.

100 знаменитых изобретений - читать онлайн бесплатно ознакомительный отрывок

100 знаменитых изобретений - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владислав Пристинский
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Легкими называют нефти с плотностью до 0,9 г/см 3, тяжелыми – выше 0,9 г/см 3.

Переработка нефти начинается с ее перегонки – процесса термического разделения нефти на основные фракции: бензин, лигроин, керосин, реактивное и дизельное топлива, топочный мазут. Мазут используется не только как горючее, но и как сырье для производства парафина, смазочных масел, гудрона и других нефтепродуктов. Перегонка нефти осуществляется в непрерывно действующих трубчатых установках. Остатком перегонки является мазут или гудрон. Мазут перегоняется в вакууме, в результате отбираются масляные фракции и остается гудрон.

После перегонки проводятся вторичные процессы переработки: крекинг, риформинг, гидроформинг и др. Результатом этих процессов является распад тяжелых углеродов на более легкие.

Крекинг может проходить как чисто термический процесс – термический крекинг, так и в присутствии катализаторов – каталитический крекинг.

Продукты термического крекинга, проводящегося при температуре 470–540 °C и под давлением 40–60 атмосфер, нестабильны при хранении, бензины из этих продуктов требуют последующего риформинга.

Риформинг – процесс дальнейшей переработки продуктов термического крекинга для получения высокооктановых бензинов и ароматических углеродов. До 30-х годов XX в. он представлял собой разновидность термического крекинга и проводился при температуре 540 °C и давлении 50–70 атмосфер. Сейчас это разновидность каталитического крекинга. Он происходит при температуре 350–520 °C и давлении 15–40 атмосфер в присутствии катализаторов, содержащих металлы платиновой группы и другие металлы. Риформинг осуществляется под высоким давлением водорода во избежание деактивации катализатора коксом. Продуктами риформинга являются бензины с октановым числом 90–95, водород и углеводороды.

Термический крекинг низкого давления проводится при температуре 500–600 °C под давлением в несколько атмосфер. Он также называется коксованием и применяется для переработки тяжелых фракций нефти, например гудронов, в более легкие. Наряду с ними получают кокс.

Высокотемпературный крекинг происходит при температуре 650–750 °C и под давлением, близким к атмосферному.

При каталитическом крекинге присутствуют катализаторы – алюмосиликаты. Его осуществляют при температуре 450–520 °C под давлением 2–3 атмосферы в реакционных колоннах с неподвижным или циркулирующим катализатором. Распад при этом виде крекинга проходит гораздо быстрее, чем при термическом, а качество бензина выше.

Средние и тяжелые нефтяные дистилляты с большим содержанием сернистых и смолистых соединений перерабатывают каталитическим крекингом в присутствии водорода – так называемый гидрокрекинг. Он осуществляется при температурах 350–450 °C, давлении водорода 30–140 атмосфер. Катализаторами здесь служат соединения молибдена, никеля и кобальта. Получаемые моторные топлива отличаются высоким качеством.

Газы крекинга разделяются на отдельные фракции, одна из которых называется бутан-бутилен. При этом из легкого газообразного углеводорода бутана химическим путем в присутствии некоторых катализаторов получается другой углеводород той же химической формулы, но другой химической структуры – изобутан (из которого можно получить технически чистый изобутилен). Эти основные компоненты являются важным сырьем для современного химического синтеза.

Для использования в тех же целях других фракций крекинг газов применяется химический процесс, в результате которого получается другой вид высокооктанового топлива – неогексан. Для получения его используется промышленный процесс алкилирования – взаимодействие углеводорода этилена с парафиновым углеводородом изобутаном. В этом процессе требуемая фракция крекинг-газа подвергается прежде всего термическому разложению при температуре 750 °C. Полученный газ, богатый непредельным углеводородом – этиленом, сжимается в компрессоре до 60 атмосфер и подается в специальную стальную башню, орошаемую сжиженным изобутаном. В жидком изобутане этилен растворяется, насыщенный этиленом жидкий изобутан сжимается до 320 атмосфер и направляется в печь для проведения химической реакции.

В результате химической реакции при температуре 500 °C получается неогексан, загрязненный примесями, от которых очищается в специальных ректификационных колоннах.

В современной технике из нефти получают не только топливо, но и ряд важных веществ. На долю нефтехимии приходится около четверти всей химической продукции мира. Это спирты, синтетический каучук, пластмассы, ароматические соединения, биотехнологические производства.

Здесь нельзя не вспомнить слова Д. И. Менделеева: «Жечь нефть – все равно, что топить ассигнациями».

Лазер

В основе работы всех лазеров лежит один и тот же физический принцип: вынужденное испускание атомами вещества порций – квантов электромагнитного излучения. Этот принцип и определил название прибора. Слово «лазер» образовано из начальных букв английской фразы: Light Amplification by Stimulated of Radiation, т. e. «усиление света посредством вынужденного излучения». Другое его название – квантовый генератор оптического излучения.

Благодаря работам Максвелла и Герца в конце XIX в. в науке утвердилась волновая теория электромагнитного излучения, в частности светового. Но в рамках этой теории нельзя было объяснить некоторых явлений, например фотоэффекта и экспериментально полученного частотного распределения энергии излучений абсолютно черного тела.

В 1900 г. немецкий физик М. Планк предположил, что излучение испускается небольшими порциями, которые он назвал квантами. С помощью квантовой теории Н. Бор построил новую модель атома с устойчивыми орбитами. Пока электроны находятся на этих орбитах, излучаемая ими энергия равна нулю. Излучение происходит в том случае, если электрон перейдет на орбиту с более низким энергетическим уровнем. В 1905 г. А. Эйнштейн, исследую фотоэффект, распространил квантовую теорию Планка на световые лучи. Квант света получил название «фотон».

Ученые давно обращали внимание на явление самопроизвольного испускания света атомами, происходящее потому, что возбужденный каким-либо способом электрон вновь возвращается с верхних электронных оболочек атома на нижние. Такими переходами вызваны явления химической, биологической и световой люминесценции. Но люминесцентный свет слишком слаб и рассеян, поскольку каждый атом при люминесценции испускает свой свет в разное время, не согласованное с атомами-соседями. В результате возникает хаотичное вспышечное излучение.

В 1916 году А. Эйнштейн установил, что согласовать вспышки излучения отдельных атомов между собой позволило бы внешнее электромагнитное излучение, например свет. Оно может заставить электроны разных атомов одновременно взлететь на одинаково высокие возбужденные уровни. Это же излучение может произвести «световой выстрел»: направленное на кристалл, оно может вызвать одновременное возвращение на исходные орбиты сразу нескольких десятков тысяч возбужденных электронов. Это приведет к испусканию огромного количества квантов электромагнитной энергии. Направление и фаза колебаний квантов будет совпадать с направлением и фазой падающей волны. В результате энергия выходной волны будет многократно превосходить энергию волны, которая была на входе. Внешне это будет выглядеть как ослепительно яркая вспышка света практически одной длины волны или монохроматического света.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владислав Пристинский читать все книги автора по порядку

Владислав Пристинский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




100 знаменитых изобретений отзывы


Отзывы читателей о книге 100 знаменитых изобретений, автор: Владислав Пристинский. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x