Владислав Пристинский - 100 знаменитых изобретений
- Название:100 знаменитых изобретений
- Автор:
- Жанр:
- Издательство:Фолио
- Год:2006
- Город:Харьков
- ISBN:966-03-3271-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владислав Пристинский - 100 знаменитых изобретений краткое содержание
Вся история человечества – это непрерывная цепь изобретений. И из этой цепи нельзя вынуть ни одного звена – иначе она вся разрушится. . В этой книге рассказывается о ста знаменитых изобретениях цивилизации – тех, без которых на планете Земля не было бы жизни. Так что цепь изобретений, о которой упоминалось, не прерывается, и не прервется никогда – она будет лишь удлиняться.
100 знаменитых изобретений - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Растертый в пудру свинцовый блеск применялся на Востоке для подведения глаз. В Египте соединения свинца применялись для окрашивания стекол в желтый цвет.
В Средние века низкая температура плавления (327 °C) позволяла отливать из свинца пули для ружей и пистолетов.
В наши дни свинец применяется в производстве аккумуляторов, из него делают оболочки кабелей. Свойство свинца поглощать рентгеновские и радиоактивные лучи используется для защиты от излучения.
Олово впервые было получено из природной двуокиси – касситерита – путем выплавки с древесным углем. О получении бронзы путем добавления к меди олова было рассказано выше. Хорошие литейные свойства олова позволили изготавливать из него посуду, а начиная с XVIII в. – популярных до сих пор оловянных солдатиков. С появлением консервов олово стали применять для покрытия жести, из которой делают консервные банки. В электротехнике оловянные припои применяют для пайки проводов.
Существуют две модификации олова: α– и β-олово. При комнатной температуре существует β-олово. Это белое вещество. При температуре ниже 13 °C более устойчиво α-олово – серый мелкокристаллический порошок. Процесс превращения белого олова в серое проходит при температуре –33 °C. Оно получило название «оловянной чумы». Считается, что именно эта «болезнь» послужила причиной гибели полярной экспедиции экспедиции Р. Скотта к Южному полюсу. Путешественники остались без горючего, просочившегося через пораженные «чумой» швы баков.
Третий из металлов, считающихся драгоценными, – платина, был открыт на несколько тысячелетий позже золота и серебра. В переводе с испанского «платина» означает «серебришко». Так испанцы презрительно называли тяжелый белый нержавеющий металл, часто встречавшийся им на серебряных рудниках в Южной Америке.
Большое количество платины было вывезено в Испанию, где ее продавали по цене более низкой, чем серебро. Недобросовестные ювелиры примешивали ее к золоту и изготавливали из платины фальшивые монеты. Это привело к тому, что испанский король издал указ о запрете ввоза платины в страну и уничтожении всего оставшегося количества платины. Все запасы металла в Испании и колониях были утоплены в море.
В 1744 г. испанский морской офицер А. де Ульоа привез образцы платины в Лондон. Это вызвало интерес у ученых. В середине XVIII в. платина была признана самостоятельным металлом.
Похожая на серебро внешне и способностью не ржаветь, платина долгое время не поддавалась ни огню, ни молоту. Из-за высокой температуры плавления – (1769 °C) ее долго не могли расплавить. Температуру плавления металла снижали добавки мышьяка. Этот прием, в частности, использовал французский ювелир М.-Э. Жанетти, изготавливавший изделия из платины.
После введения метрической системы мер в конце XVIII в. во Франции из платины изготовляли эталоны метра и килограмма. Позже их стали делать из сплава платины и металла платиновой группы – иридия.
Русский ученый А. А. Мусин-Пушкин разработал и ввел новые методы аффинажа платины – металлургического процесса получения металла высокой степени чистоты путем отделения примесей. Схема аффинажа платины основывалась на растворении сырой (шлаковой) платины в «царской водке» – смеси азотной и соляной кислот – и на последовательном осаждении нашатырем платины из раствора.
В середине XIX в. в России были отчеканены монеты из платины.
Вплоть до Второй мировой войны большая часть добываемой платины шла на изготовление украшений. Сейчас около 90 % всей платины идет на научные и промышленные разработки. Из нее делают лабораторные приборы – тигли, чашки, термометры сопротивления и др. Около 50 % всей потребляемой платины идет на изготовление катализаторов – ускорителей химических реакций. Они применяются в производстве соляной кислоты и нефтехимической промышленности. Около 25 % платины расходуется в электро– и радиотехнике, автоматике и медицине. Кроме того, ее применяют как антикоррозионное покрытие.
Самый распространенный в природе металл – алюминий. Но в относительно чистом виде он был получен датским физиком Эрстедом лишь в 1825 г. Ученый писал в одном из научных журналов, что в результате его опытов «образовался кусок металла, цветом и блеском несколько похожий на олово». Это сообщение осталось почти незамеченным, да и сам Эрстед не придал своему открытию большого значения.
В 1827 г. к Эрстеду приехал молодой немецкий физик Ф. Велер. Вернувшись в Германию, он занялся проблемой получения алюминия и в конце 1827 г. опубликовал свой метод. Вначале ему удавалось получать алюминий в виде зерен небольшого размера. После 18 лет кропотливой работы Велер усовершенствовал свой способ, получая металл в виде компактной массы.
В то время алюминий ценился очень дорого. Так, из него были сделаны погремушки для будущего императора Франции Наполеона III. Именно он, уже будучи монархом, решил вызвать зависть у своих венценосных коллег. С этой целью он решил сделать из алюминия доспехи для солдат своей армии. Для осуществления проекта он предоставил неограниченные возможности ученому и промышленнику А.Э. Сент-Клер Девилю, чтобы тот разработал способ получения алюминия в больших количествах. Девиль положил в основу своих исследований метод Велера и разработал соответствующую технологию, внедрив ее на своем заводе.
Способ Девиля заключался в восстановлении двойного хлорида алюминия и натрия Na 3AlCl 6металлическим натрием.
Чтобы прекратить спекуляции некоторых бонапартистских кругов о якобы французском приоритете открытия алюминия, Девиль отчеканил из алюминия медаль собственного производства с портретом Ф. Велера и датой «1827», послав ее в подарок немецкому ученому.
Несмотря на изобретение Девиля, алюминий ценился очень дорого. С 1855 по 1890 г. в мире было получено всего 200 тонн металла. Это было связано с тем, что в природных соединениях алюминий крепко связан с кислородом и другими элементами. Его можно получать методом электролиза расплава оксида алюминия – глинозема, но он плавится при температуре 2050 °C, что требует больших затрат энергии.
Техническое использование алюминия стало бы возможным, если бы удалось понизить температуру плавления оксида хотя бы до 1000 °C. Такой способ почти одновременно открыли в 1886 г. американец Ч. Холл и француз П. Эру. Они установили, что глинозем хорошо растворяется в расплавленном криолите – минерале AlF 3-3NaF. Этот расплав подвергается электролизу при температуре 950 °C. Поскольку запасы криолита ограничены, позже было налажено производство синтетического криолита.
Чистый алюминий имеет сравнительно небольшую прочность, поэтому в конце XIX – начале XX в. велись поиски алюминиевого сплава, обладающего большой прочностью. В начале прошлого века немец А. Вильм получил сплав, содержавший, кроме алюминия, добавки меди, магния и марганца. Его прочность была выше, чем у алюминия. Чтобы еще больше ее повысить, Вильм решил подвергнуть металл закалке. С этой целью он нагрел несколько образцов сплава примерно до 600 °C и резко охладил их в воде. Прочность образцов была различной, и Вильм решил, что неисправен измерительный прибор. Несколько дней ученый настраивал его. Повторные измерения показали, что прочность возросла примерно вдвое. Следующие опыты показали, что закалка нового сплава в сочетании со старением значительно повышает прочность нового сплава.
Читать дальшеИнтервал:
Закладка: