БСЭ - Большая Советская энциклопедия (Би)
- Название:Большая Советская энциклопедия (Би)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ - Большая Советская энциклопедия (Би) краткое содержание
Большая Советская энциклопедия (Би) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Лит.: Кашкаров Д. Н., Основы экологии животных, 2 изд., Л., 1945; Беклемишев В. Н., О классификации биоценологических (симфизиологических) связей, «Бюлл. Московского общества испытателей природы», 1951, т. 56, в. 5; Гиляров М. С., Вид, популяция и биоценоз, «Зоологический журнал», 1954, т. 33, в. 4; Арнольди К. В. и Л. В., О биоценозе, там же, 1963, т. 42, в. 2; Наумов Н. П., Экология животных, 2 изд., М., 1963; Основы лесной биогеоценологии, под ред. В. Н. Сукачева и Н. В. Дылиса, М., 1964; Макфедьен Э., Экология животных, пер. с англ., М., 1965; Одум Е., Экология, М., 1968; Дювиньо П. и Танг М., Биосфера и место в ней человека, пер. с франц., М., 1968; Tischler W., Synökologie der Landtiere, Stuttg., 1955; Balogh J.. Lebensgemeinschaften der Landtiere, Bdpst — B., 1958; Kormondy Е. J., Readings in ecology, L., 1965.
М. С. Гиляров.
Биоценология
Биоценоло'гия(от биоценоз и ...логия ), наука, изучающая растительные и животные сообщества в их совокупности, т. е. биоценозы, их строение, развитие, распределение в пространстве и во времени, происхождение. Изучение сообществ организмов в их взаимодействии с неживой природой — предмет биогеоценологии .
Биоценометр
Биоцено'метр(от биоценоз и ...метр ), прибор для количественного учёта наземных насекомых и других беспозвоночных, применяемый при экологических исследованиях. Б. представляет собой цилиндр или куб без дна, стенки и верх которого затянуты мелкой сеткой или марлей. Применение Б.: пробная площадка размером 0,25—1 м 2 быстро (чтобы не ускользнули животные) накрывается Б. Пойманных животных извлекают из Б., умерщвляют, подсчитывают по группам и видам, взвешивают и определяют относительную численность их и массу на единицу площади данного биотопа .
Биоциклы
Биоци'клы,или жизненные области, три самых крупных подразделения биосферы : суша, море и внутренние водоёмы. Каждый Б. подразделяется на биохоры , включающие значительное число биотопов . Например, биотопы песчаных, глинистых и каменистых пустынь объединяются в биохор пустынь, который вместе с биохорами лесов, степей и др. составляет Б. суши. Термин биологические циклы употребляется в экологии в ином значении.
Лит.: Гептнер В. Г., Общая зоогеография, М. —Л., 1936; Наумов Н. П., Экология животных, М., 1955; Вернадский В. И., Химическое строение биосферы Земли и её окружения, М., 1965; Ecological animal geography, N. Y., 1951.
И. А. Шилов.
Биоэлектрические потенциалы
Биоэлектри'ческие потенциа'лы,электрические потенциалы, возникающие в тканях и отдельных клетках человека, животных и растений, важнейшие компоненты процессов возбуждения и торможения. Исследование Б. п. имеет большое значение для понимания физико-химических и физиологических процессов в живых системах и применяется в клинике с диагностической целью ( электрокардиография , электроэнцефалография , электромиография и др.).
Первые данные о существовании Б. п. («животного электричества») были получены в 3-й четверти 18 в. при изучении природы «удара», наносимого некоторыми рыбами с электрическими органами при защите или нападении. К этому же времени относится начало исследований итальянского физиолога и врача Л. Гальвани, заложивших основу учения о Б. п. Многолетний научный спор (1791—97) между Л. Гальвани и физиком А. Вольта о природе «животного электричества» завершился двумя крупными открытиями: были получены факты о существовании биоэлектрических явлений в живых тканях и открыт новый принцип получения электрического тока с помощью разнородных металлов — создан гальванический элемент ( вольтов столб ). Правильная оценка наблюдений Гальвани стала возможной лишь после применения достаточно чувствительных электроизмерительных приборов — гальванометров . Первые такие исследования были проведены итальянским физиком К. Маттеуччи (1837). Систематическое изучение Б. п. было начато немецким физиологом Э . Дюбуа-Реймоном (1848), который доказал существование Б. п. в нервах и мышцах в покое и при возбуждении. Но ему не удалось (в силу большой инерционности гальванометра) зарегистрировать быстрые, длящиеся тысячные доли сек колебания Б. п. при проведении импульсов вдоль нервов и мышц. В 1886 немецкий физиолог Ю. Бернштейн проанализировал форму потенциала действия; французский учёный Э. Ж. Марей (1875) применил для записи колебаний потенциалов бьющегося сердца капиллярный электрометр; русский физиолог Н. Е. Введенский использовал (1883) для прослушивания ритмических разрядов импульсов в нерве и мышце телефон, а голландский физиолог В. Эйнтховен (1903) ввёл в эксперимент и клиническую практику струнный гальванометр — высокочувствительный и малоинерционный прибор для регистрации электрических токов в тканях. Значительный вклад в изучение Б. п. внесли русские физиологи: В. В. Правдич-Неминский (1913—21) впервые зарегистрировал электроэнцефалограмму, А. Ф. Самойлов (1929) исследовал природу нервно-мышечной передачи возбуждения, а Д. С. Воронцов (1932) открыл следовые колебания Б. п., сопровождающие потенциал действия в нервных волокнах. Дальнейший прогресс в изучении Б. п. был тесно связан с успехами электроники, позволившими применить в физиологическом эксперименте электронные усилители и осциллографы (работы американских физиологов Г. Бишопа, Дж. Эрлангера и Г. Гассера в 30—40-х гг. 20в.). Изучение Б.п. в отдельных клетках и волокнах стало возможным с разработкой микроэлектродной техники . Важное значение для выяснения механизмов генерации Б. п. имело использование гигантских нервных волокон головоногих моллюсков, главным образом кальмара. Диаметр этих волокон в 50 — 100 раз больше, чем у позвоночных животных, он достигает 0,5—1 мм , что позволяет вводить внутрь волокна микроэлектроды, инъецировать в протоплазму различные вещества и т.п. Изучение ионной проницаемости мембраны гигантских нервных волокон позволило английским физиологам А. Ходжкину, А. Хаксли и Б. Катцу (1947—52) сформулировать современную мембранную теорию возбуждения.
Различают следующие основные виды Б. п. нервных и мышечных клеток: потенциал покоя, потенциал действия, возбуждающие и тормозные постсинаптические потенциалы, генераторные потенциалы.
Потенциал покоя(ПП, мембранный потенциал покоя). У живых клеток в покое между внутренним содержимым клетки и наружным раствором существует разность потенциалов (ПП) порядка 60— 90мв , которая локализована на поверхностной мембране. Внутренняя сторона мембраны заряжена электроотрицательно по отношению к наружной ( рис. 1 ). ПП обусловлен избирательной проницаемостью покоящейся мембраны для ионов К +(Ю. Бернштейн, 1902, 1912; А. Ходжкин и Б. Катц, 1947). Концентрация К +в протоплазме примерно в 50 раз выше, чем во внеклеточной жидкости, поэтому, диффундируя из клетки, ионы выносят на наружную сторону мембраны положительные заряды, при этом внутренняя сторона мембраны, практически не проницаемой для крупных органических анионов, приобретает отрицательный потенциал. Поскольку проницаемость мембраны в покое для Na +примерно в 100 раз ниже, чем для К +, диффузия натрия из внеклеточной жидкости (где он является основным катионом) в протоплазму мала и лишь незначительно снижает ПП, обусловленный ионами К +. В скелетных мышечных волокнах в возникновении потенциала покоя важную роль играют также ионы Cl -, диффундирующие внутрь клетки. Следствием ПП является ток покоя, регистрируемый между поврежденным и интактным участками нерва или мышцы при приложении отводящих электродов. Мембраны нервных и мышечных клеток (волокон) способны изменять ионную проницаемость в ответ на сдвиги мембранного потенциала. При увеличении ПП (гиперполяризация мембраны) проницаемость поверхностных клеточных мембран для Na +и К +падает, а при уменьшении ПП (деполяризация) она возрастает, причём скорость изменений проницаемости для Na +значительно превышает скорость увеличения проницаемости мембраны для К +.
Читать дальшеИнтервал:
Закладка: