Ф. Брокгауз - Энциклопедический словарь (Л)
- Название:Энциклопедический словарь (Л)
- Автор:
- Жанр:
- Издательство:Русское слово
- Год:1996
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ф. Брокгауз - Энциклопедический словарь (Л) краткое содержание
Энциклопедический словарь (Л) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Г. Надсон.
Лишение свободы
Лишение свободы как наказание, заключается в том, что преступник в более или менее значительной степени ограничивается в свободе располагать собой и своими действиями, особенно в свободе передвижения. Л. свободы является центром современной карательной системы, в которой оно заняло место, прежде принадлежавшее смертной казни и телесным наказаниям. В видах достижения исправительных целей Л. свободы передвижения сопряжено с различными ограничениями, как-то обязательным трудом, обязательным режимом жизни и т. п. Все виды Л. свободы могут быть сведены к трем: надзор, заключение и удаление.
Лобачевский
Лобачевский (Николай Иванович) – великий русский геометр, творец науки, называемой, по его имени, гeoмeтpиeй Лобачевского; род. 22 октября 1793 г., воспитывался в казанской гимназии и университете, по математическому факультету. В 1811 г. Л. получил степень магистра и приступил к преподаванию в казанском унив. небесной механики и теории чисел. В 1816 г. Л. получил кафедру чистой математики. Он был 6 раз кряду избираем в ректоры университета и состоял членом многих ученых обществ и почетным членом университетов московского и казанского. Деятельность Л. была изумительна: он читал лекции и свои и за своих товарищей, посылаемых за границу, присутствовал на всех заседаниях и, в то же время, являлся творцом совершенно новых взглядов на геометрию. В числе аксиом, положенных Евклидом в основание геометрии, существует одна, так называемая 11-я аксиома, сводимая к утверждению, что через одну точку может быть проведена к данной прямой только одна параллельная. Уже с давних пор многим геометрам это положение не представлялось очевидным, и существует огромная литература попыток доказать это положение, основываясь на других аксиомах; но все такие попытки были неудачны, представляя собою сведение 11-й аксиомы на какое-нибудь другое положение, тоже не очевидное. Таким образом оставался нерешенным вопрос первостепенной важности: о степени достоверности геометрии, вытекающий из вопроса о том, достоверна ли 11-я аксиома. Эту трудную задачу, не поддававшуюся усилиям величайших умов, Л. решил окончательно, избрав чрезвычайно оригинальный путь. Л. попытался построить целую систему геометрических положений, исходящих из отрицания справедливости 11-й аксиомы, и при том систему строго логичную, не содержащую никаких внутренних противоречий. Если 11-я аксиома Евклида может быть доказана при помощи других аксиом, то она должна быть их следствием; если она представляет собой их следствие, то система Л., отвергающая ее, должна стать в противоречие с одной из других аксиом; если же такого противоречия не последует, то 11-я аксиома не представляет собой следствия одной из остальных аксиом, не может быть, при помощи их, доказана и является положением, которое следует или принять без доказательств, или свести на положение более очевидное. Против такого рассуждения возражали, говоря, что система Л. потому не встретилась с противоречием, что не была до него доведена, но итальянский геометр Бельтрами показал, что вся система Л. вполне совпадает с системой Евклида, если сравнить геометрию Л. на плоскости с обыкновенной геометрией на особой поверхности, называемой псевдосферой и представляющей вид шампанского бокала; так что если бы геометрия Л. встретила при своем развитии какие-либо несообразности, то и обыкновенная геометрия на псевдосфере была бы нелепа, откуда следует, что геометрия Л. не может быть приведена к абсурду. Таким образом, одна из великих заслуг Л. заключается в данном им доказательстве невозможности доказать 11-ю аксиому посредством других аксиом. Создав свою геометрию, Л. дал толчок к построению геометрических систем, имеющих дело с пространствами, совершенно не похожими на обыкновенное пространство, и этим указал на возможность логического мышления, имеющего объектами вещи, находящиеся вне времени и вне нашего обыкновенного пространства. В этом заключается высокое философское значение работ Л. Долгое время ученые мало обращали внимания на эти работы, и только Гаусс оценил при жизни Л. великое значение провозглашенных им идей; но после трудов Бельтрами, Римана и Гельмгольца эти идеи получили широкое распространение, и возник особый отдел математической литературы, представляющий собой значительное количество мемуаров, посвященных развитию идей Л. Казанское физико-математическое общество издало к юбилею Л., праздновавшемуся в день, когда исполнилось 100 лет со дня рождения великого геометра (сконч. Л. в 1856 г.), собрание переводов на русский язык важнейших основных сочинений по этой новой отрасли математики, под общим заглавием: «Об основании геометрии». Сочинения Л., ставящие его на ряду с гениальнейшими математиками всех времен, суть следующие: «О началах геометрии» ("Казанский Вестн. ", 1829 – 1830); «Geometrie imaginaire» («Crell's Journal fur die reine und angewandte Mathematik», т. 17); « Воображаемая геометрия» («Учен. Записки Казанского Унив.», 1835); «Новые начала геометрии с полной теорией параллельных» («Учен. Записки Казанского Унив.», 1835, 1836, 1837 и 1838); «Применение воображаемой геометрии к некоторым интегралам» («Учен. Записки Казанск. Унив.», 1836); «Geometrische Untersuchungen zur Theorie der Parallellinien» (Б., 1840); «Pangeometrie ou precis de geometrie fondee sur une theorie generale et rigoureuse des paralleles» – в сборнике, изданном по случаю юбилея казанского унив. в 1856 г.
Н. Делоне.
Лобное место
Лобное место – в московском Китай-городе, на Красной площади. Устроенное, по преданию, в начале XVI в., оно впервые упоминается под 1550 г., когда Иоанн IV дал с него народу торжественный обет править на благо государства. Из Годуновского чертежа Москвы видно, что это был помост из кирпича; по описям XVII в. он имел деревянную решетку, а также навес или шатер на столбах. В 1786 г. Л. место вновь отстроено, по прежнему плану, из дикого тесаного камня. Теперь возвышенный круглый помост его окружен каминными перилами; в зап. части – вход с железной решеткой и дверью; 11 ступеней ведут на верхнюю площадку. Наибольшее значение для московского населения Л. место имело в допетровское время. Издревле и доныне крестные ходы останавливаются около него и с его вершины архиерей осеняет народ крестным знаменем. Во время «Входа в Иерусалим» патриарх с духовенством восходил на Л. место, раздавал освященные вербы царю, духовенству и боярам и оттуда ехал на осле, ведомом царем. Поныне около Л. места продаются вербы и устраиваются гулянья. С 1550 г. Л. место нередко называлось в актах «Царевым», как царский трибунал, царская кафедра. До Петра на нем объявлялись народу важнейшие указы государей. Олеарий называет его Theatrum proclamationum. Польские послы 1671 г. сообщают, что здесь государь однажды в год являлся перед народом и, по достижении наследником 16 лет, показывал его народу, что подтверждает и Коллинс. С Л. места объявлялось народу об избрании патриарха, войне, о заключении мира; около него были казнены «крамольники» Иоанном IV и стрельцы Петром I; у его ступеней в 1606 г. лежал обезображенный труп Лжедимитрия I; с него требовали собора и потом объявили свою победу в 1682 г. Никита Пустосвят «с товарищи»; с него же успокаивал возмутившийся народ Алексий Михайлович. Ср. Снегирев, «Л. место в Москве» (в «Чт. Моск. Общ. Ист. и Др. Рос.» за 1861 г., № 1), и Фабрициус, «Кремль в Москве».
Читать дальшеИнтервал:
Закладка: