Эдвард Торп - Человек на все рынки: из Лас-Вегаса на Уолл-стрит. Как я обыграл дилера и рынок
- Название:Человек на все рынки: из Лас-Вегаса на Уолл-стрит. Как я обыграл дилера и рынок
- Автор:
- Жанр:
- Издательство:Литагент Аттикус
- Год:2017
- ISBN:978-5-389-14128-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эдвард Торп - Человек на все рынки: из Лас-Вегаса на Уолл-стрит. Как я обыграл дилера и рынок краткое содержание
«Воспоминания Эда Торпа читаются как триллер. В них замешаны потайные носимые компьютеры, от которых не отказался бы и Джейм с Бонд, зловещие персонажи, великие ученые и попытки отравления (не говоря уже о диверсии, после которой Эд должен был “попасть в аварию” посреди пустыни). Эта книга рисует портрет аккуратного, серьезного, организованного человека, посвятившего себя поискам жизни, знаний, финансовой безопасности и, не в последнюю очередь, удовольствий». (Нассим Талеб) «Я приглашаю вас принять участие в моей одиссее по мирам науки, азартных игр и рынков ценных бумаг. Вы узнаете, как мне удалось преодолеть всевозможные опасности и добиться успеха в Лас-Вегасе, на Уолл-стрит и в моей собственной жизни. В этом путешествии вы встретитесь с интересными людьми, от считающих карты игроков в блэкджек до специалистов по инвестициям, от кинозвезд до нобелевских лауреатов. Вы познакомитесь с опционами и другими производными финансовыми инструментами, а также с хедж-фондами и узнаете, как простая инвестиционная стратегия позволяет в долговременной перспективе обыграть всех, даже самых опытных, инвесторов». (Эдвард Торп)
Человек на все рынки: из Лас-Вегаса на Уолл-стрит. Как я обыграл дилера и рынок - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Он давал убедительное доказательство правильности того озарения, которое пришло ко мне в библиотеке УКЛА, – что в этой игре можно выиграть, а точнее, что по мере розыгрыша карт происходят большие изменения преимущества, как в пользу казино, так и в пользу игроков. Математические результаты также показывали, что если удаление определенного набора карт из колоды изменяет шансы на выигрыш в одну сторону, то добавление в колоду равного числа таких же карт должно привести к равному по величине изменению этих шансов в другую сторону. Это означало, что колода, «богатая», а не «бедная» тузами, должна давать игроку большое преимущество. Так, при увеличении содержания тузов в колоде в два раза, – например, когда все четыре туза присутствуют в числе двадцати шести оставшихся карт (половины колоды) [54] Вероятность того, что все четыре туза входят в число последних 26 карт, составляет около 5,5 %. (прим. автора)
, – преимущество игрока должно увеличиться приблизительно на 2,51 %, и в сочетании с исходным преимуществом заведения 0,21 % игрок должен получить чистое преимущество около 2,30 %.
Каждые два или три дня я возвращался в вычислительный центр и забирал результаты очередного расчета, выполнение каждого из которых вручную заняло бы тысячу человеко-лет. Теперь я знал, что происходит при удалении из колоды четырех карт любого одного типа [55] Позднейшие точные вычисления дают значения, несколько более благоприятные для игрока. Эти результаты также учитывают многочисленные изменения в правилах, установленных казино. Более подробную информацию см.: Thorp (1962, 1966), Griffin (1999), Wong (1994). (прим. автора)
. Наиболее невыгодным для игрока было изъятие тузов, за ними следовали десятки, удаление которых увеличивало преимущество заведения на 1,94 %. Однако изъятие «мелких» карт – двоек, троек, четверок, пятерок и шестерок – приносило игроку огромную выгоду. Наибольший эффект давало удаление пятерок: в этом случае исходное преимущество казино, равное 0,12 %, превращалось в гигантское преимущество игрока, составлявшее 3,29 %.
Теперь я мог разработать множество разнообразных выигрышных стратегий на основе отслеживания разыгранных карт. Анализ, который я провел в МИТ на IBM 704, дал базовые результаты, легшие в основу системы подсчета пятерок, большей части системы подсчета десяток и концепции стратегии, которую я назвал абсолютной. В ней каждой карте присваивается некоторое число очков, пропорциональное тому воздействию, которое эта карта оказывает на игру: туз имеет значение –9, двойка – +5 и так далее, вплоть до десятки, которая считается за –7. Хотя вести такой подсчет в уме практически невозможно, оказалось, что многие более простые системы также могут быть вполне эффективными. Одно из наиболее удачных компромиссных решений, сочетающих в себе действенность и простоту использования, заключается в следующем: появляющимся в игре мелким картам (от двойки до шестерки) присваивается значение +1, картам среднего достоинства (семеркам, восьмеркам и девяткам) – 0, а –1 – крупным картам (от десятки до туза). Из результатов моего компьютерного анализа кто угодно мог вывести все подробности почти всех используемых сейчас систем подсчета карт в блэкджеке.
Интуитивно эти результаты казались вполне логичными. Например, когда у дилера на руке 16, он обязан прикупать. Если он прикупает крупную карту, которая дает ему сумму, превышающую 21, он проигрывает, а если он получает мелкую карту, он остается в игре. Пятерка дает ему 21, наилучший из возможных вариантов. Поэтому дилеру выгодно, чтобы колода была богата мелкими картами и бедна крупными. И в то же время при высоком содержании в колоде тузов и десяток увеличивается и количество сочетаний из двух карт, дающих 21 очко, или блэкджеков. Как игрок, так и дилер получают блэкджек приблизительно в 4,5 % случаев, но игрок получает за него выплату, равную полуторному размеру сделанной ставки, а дилер выигрывает только ставку игрока, то есть игрок получает большую выгоду.
Принцип отслеживания пятерок позволяет создать очень простую выигрышную систему. Предположим, что игрок делает меньшие ставки при наличии в колоде оставшихся пятерок и более крупные в их отсутствие. Вероятность выхода из игры всех пятерок возрастает по мере уменьшения числа карт в колоде. Когда в колоде остается двадцать шесть карт, такая ситуация возникает приблизительно в 5 % случаев, а когда остается всего 13 карт, – в 30 % случаев. В таких условиях игрок получает преимущество 3,29 %, и если он делает очень крупные ставки, то в долговременном масштабе он должен оставаться в выигрыше.
Для реальной игры в казино я разработал гораздо более действенную выигрышную стратегию, основанную на колебаниях содержания в колоде десятиочковых карт. Хотя мои расчеты показывали, что каждая отдельная десятка влияет на состояние игры слабее, чем пятерка, следует учесть, что десяток в колоде содержится в четыре раза больше. Колебания «богатства десятками» получаются более сильными и дают игроку большее количество более благоприятных возможностей.
Когда летом 1960 года мы всей семьей ехали из Бостона в Калифорнию, мне, хоть и не без труда, удалось убедить Вивиан заехать в Лас-Вегас, чтобы испытать на практике стратегию подсчета десяток. Мы сели играть в блэкджек в одном из казино в центре города, на Фримонт-стрит. У меня был банкролл 200 долларов [56] Эта книга охватывает период длительностью более восьмидесяти лет, за которые стоимость денег изменилась чрезвычайно сильно. Чтобы получить более точное представление об упоминаемых суммах, читатель может перевести их в сегодняшние доллары при помощи материалов, приведенных в приложении А. (прим. автора)
(что соответствует 1600 долларам в ценах 2016 года) и карточка размером с ладонь с изложением моей новой стратегии. Я надеялся не пользоваться карточкой, чтобы не привлекать к себе внимания. Эта карточка была совсем не похожа на все предыдущие варианты. Она не только подсказывала мне, как разыгрывать все возможные руки при всех возможных открытых картах дилера, но и показывала, сколько следует ставить и как принимаемые в игре решения изменяются в зависимости от изменений содержания десяток. Поскольку в полной колоде содержится 16 десяток и 36 прочих карт, я начал счет со значений «36, 16», что соответствует отношению числа прочих карт к числу десяток, равному 36: 16 = 2,25.
Мы с Вивиан сели за стол вместе – она ставила по 25 центов, просто чтобы оставаться рядом со мной. По ходу игры я отслеживал использованные десятки и прочие карты и уменьшал число остающихся в колоде. Каждый раз, когда мне нужно было сделать ставку или принять решение в игре, я пересчитывал отношение, используя последние на этот момент числа. Отношение, меньшее 2,25, означает, что колода богата десятками; при отношении, равном 2,0, игрок имеет преимущество около 1 %. При отношениях, равных или меньших 2,0, то есть при уровнях преимущества, равных или больших 1 %, я ставил от 2 до 10 долларов, в зависимости от величины преимущества. В прочих случаях мои ставки были по 1 доллару.
Читать дальшеИнтервал:
Закладка: