Дэннис Пегин - Понять небо
- Название:Понять небо
- Автор:
- Жанр:
- Издательство:ЧП «ПИЕЛ»
- Год:1997
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэннис Пегин - Понять небо краткое содержание
Понять небо - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Рис. 184. Перемешивание, нисходящие и восходящие потоки возле термика
Понятно, что идеальные термики встречаются в природе один из тысячи. Очень часто сердцевина термика непостоянна, различной силы или даже их несколько. В следующей главе мы подробнее остановимся на различных вариациях термических потоков.
НИСХОДЯЩИЕ ПОТОКИ В ТЕРМИКАХ
Мы знаем, что в нестабильных условиях поднимающийся воздух стремится продолжать подъем, а опускающийся стремится продолжить снижение, при этом оставаясь более холодным, чем окружающий. Этот процесс движения воздуха вниз аналогичен термику, но противоположен по направлению. В хороших термичных условиях будет также обилие нисходящих потоков. Обычно чем сильнее термики, тем сильнее и нисходящие потоки. Термические восходящие потоки занимают только 1/10 часть пространства или даже меньше, поэтому нисходящие более распространены и не так организованы.
Межтермальные нисходящие потоки, обычно, самые сильные наверху, где термики обширнее. Если термики возникают в горах, то нисходящие потоки могут быть более обширными и организованными. Иногда, находясь, долгое время в нисходящем потоке, целесообразно отвернуть от курса на 90°, очень возможно, что вы двигались вдоль длинной оси нисходящего потока.
ИТОГИ
Мы пытались продолжить наши воздушные приключения, как только возможно. Одним из самых лучших движителей для этого являются термические потоки. Это подобно воздушному шару, поднимающему нас в небо. Единственная трудность — это то, что они в своем большинстве невидимы. Изучая их природу и поведение, мы с большей вероятностью определяем как, где и когда их можно найти.
Термиков множество везде и в различное время. Они переменчивы во всех свойствах: мощности, турбулентности, размерах, направлении развития и высоте. Только опыт, знания и немного удачи позволят вам найти лучший термик в данных условиях. Мы теперь имеем хорошую базу, знание основ поведения термических потоков. Далее мы будем изучать их секреты более глубоко и подробно.

Глава 10
Наука о термиках
Вы не найдете ни одного человека на земле, который был бы более счастлив, чем пилот, приземлившийся после длительного полета в термических потоках. Это награда природы пилоту, который ищет их и, обнаружив, умело обрабатывает. Полеты в термиках — это полеты, в которых между пилотом и окружающим его воздухом стоит минимум приборов и оборудования. Это комбинация случайности и мастерства.
После изучения предыдущей главы мы понимаем механизм зарождения и движущие силы термических потоков. Теперь мы обратим наше внимание на поведение термиков в небе. Наша задача познать законы термической деятельности, чтобы минимизировать роль случая и поднять до максимума роль нашего мастерства в полетах.
РАЗМЕРЫ И МОЩНОСТЬ ТЕРМИЧЕСКИХ ПОТОКОВ
Термики — желанные призраки. Мы не можем их видеть, но они всецело захватывают наши мысли и желания. Все мы после полета можем рассказать об их размерах: диаметр, высота. Но даже эти данные неоднозначны в рассказах двух пилотов, летавших в одном потоке.
Так какие же общие, наиболее типичные характеристики термиков? Из опыта полетов можно сказать, что термик диаметром 50 м является крупным, чаще встречаются 30 м и менее. Некоторые термики, особенно в слабых условиях, могут быть больше. Когда мы находим зону восходящего потока больше чем 100 м в одном направлении, стоит задуматься только ли термик этому причина.
Давайте поближе познакомимся со сферическим пузырем диаметром около 30 м. Если подсчитать объем воздуха в нем, получим около 15000 кубических метров. На уровне моря масса воздуха в термическом потоке примерно составит 20 т. Не удивительно, что он может легко нести наш легкий летательный аппарат вверх.
Чтобы получился такой шар теплого воздуха, должен собраться слой воздуха с квадратного поля со стороной 100 м толщиной приблизительно 1,5 м. Если наш термик будет иметь диаметр в два раза больше, то объем увеличится в 8 раз, а вес возрастет до 150 тонн. Это огромная масса воздуха, живущая по определенным законам.
Силу термика логично определять по его скорости поднятия вверх. Она может изменяться в широких пределах от 0 до 17 м/сек в грозу. Обычно во влажном климате термики поднимаются со скоростью 1,1–3,9 м/сек, до 5,5 м/сек. В условиях пустынь 2,8–8,4 м/сек и даже больше. Самая большая скорость наблюдается на высоте, где градиент температуры наиболее нестабилен, как показано на рисунке 180.
Один метеоролог установил связь между силой термика и его высотностью. Это в основном так же верно, как-то, что сухие термики несколько слабее влажных, образующих облака. Данные можно свести в таблицу, по которой очень быстро определяется среднее значение скорости в термическом потоке.
Сила термического потока
Сухие термики
Мах высота термика ∙ Средняя скорость
1000 м ∙ 1,7 м/сек
2000 м ∙ 2,5 м/сек
3000 м ∙ 3,6 м/сек
Влажные термики
1000 м ∙ 1,9 м/сек
2000 м ∙ 3,0 м/сек
3000 м ∙ 4,0 м/сек
Средние скорости, приведенные в таблице, не учитывают скорость снижения вашего летательного аппарата. В условиях пустынь можно ожидать более сильные потоки и цифры в таблице должны быть выше. Кроме того, мы можем сделать вывод о том, что более сильные термики чаще всего более турбулентные, более компактные и долго живущие. Более слабые потоки мягче и часто шире.
ВЫСОТА ТЕРМИЧЕСКИХ ПОТОКОВ
Максимальная высота термиков зависит от нескольких факторов: высоты слоя инверсии, высоты образования облаков или высоты слоя сухоаддиабатического градиента (рис. 185). В первом случае мы видим, что поток остановлен инверсионным слоем. Когда термик достигает его, он турбулизируется и распадается. Если более влажный термик останавливается более сухим инверсионным слоем, то в нем могут образовываться облака, — обычно слоисто-кучевые (Sc). Слои инверсии могут быть везде, от земли до нормальной высоты работы термика. Некоторые термические восходящие потоки могут пробивать слой инверсии, если он нетолстый. Это самые сильные термики в данных условиях. Чтобы поток прошел сквозь слой инверсии, ему необходимо иметь концентрированную сердцевину (центр). Часто такой термик сохраняется над слоем инверсии.

Рис. 185. Высота термических потоков
Читать дальшеИнтервал:
Закладка: