Константин Стефанов - Cуперкомпьютеры: администрирование

Тут можно читать онлайн Константин Стефанов - Cуперкомпьютеры: администрирование - бесплатно ознакомительный отрывок. Жанр: Справочники, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Константин Стефанов - Cуперкомпьютеры: администрирование краткое содержание

Cуперкомпьютеры: администрирование - описание и краткое содержание, автор Константин Стефанов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Как стать администратором суперкомпьютера? Что нужно знать и уметь? Какие подводные камни ждут на этом нелёгком пути? В книге есть ответы на эти и некоторые другие вопросы. Материал поможет имеющим опыт системного администрирования повысить свою квалификацию, а тем, кто пока не имеет такого опыта, разобраться в том, что нужно изучить. Издание подготовлено при поддержке издательства МАКС-Пресс. ISBN 978-5-317-05877-7 © Московский государственный университет имени М. В. Ломоносова, 2018 © Оформление. ООО «МАКС Пресс», 2018

Cуперкомпьютеры: администрирование - читать онлайн бесплатно ознакомительный отрывок

Cуперкомпьютеры: администрирование - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Константин Стефанов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Иногда нужно узнать, какой машине назначен конкретный LID. Для этого можно применить утилиту smpquery. Вообще эта утилита предназначена для посылки пакетов управления подсетью SMP (Subnet Management Packet) и выдачи ответов в понятной человеку форме. В нашем случае нам нужен запрос описания узла (node description). Вот пример выдачи команды smpquery nodedesc 914(запрос описания узла с LID 914):

Узел ответил что LID 914назначен адаптеру HCA1 вычислительного узла с именем - фото 8

Узел ответил, что LID 914назначен адаптеру HCA-1 вычислительного узла с именем n51001.

При помощи smpqueryдоступна информация о том узле, которому адресован запрос. В то же время менеджер подсети имеет информацию обо всех узлах подсети. Запросить информацию у менеджера подсети можно при помощи утилиты saquery. Информацию об узле подсети с LID 914можно запросить командой saquery 914. Вот пример выдачи такой команды:

В последней строке указано описание узла включающее имя хоста Также - фото 9

В последней строке указано описание узла, включающее имя хоста. Также приводится дополнительная информация. Ещё раз обращаем внимание, что команда smpdumpпозволяет запрашивать информацию об узле в сети InfiniBand у самого этого узла, а команда saquery– у менеджера подсети. Если результаты этих запросов различаются или если команда saqueryвыдаёт ошибку – это свидетельство того, что имеются проблемы с менеджером подсети. Ещё две полезные утилиты при диагностике сетей InfiniBand – утилиты ibnetdiscoverи ibdiagnet. Утилита ibnetdiscoverпытается обнаружить все компоненты подсети: конечные узлы, коммутаторы, маршрутизаторы и связи между ними, и выводит информацию обо всех найденных компонентах. Утилита ibdiagnetтакже пытается найти все компоненты подсети, но кроме этого она ещё и пытается обнаружить ошибки в конфигурации подсети, такие как совпадающие GUID, скорости портов и т. п.

Мы не будем приводить примеры выдачи этих утилит, так как они достаточно объёмны, а для ibdiagnetещё и состоят из нескольких файлов. Мы упоминаем эти утилиты, чтобы иметь представление, какие средства можно использовать при диагностике проблем с сетью InfiniBand.

Утилиты, которые посылают информацию в сеть, имеют ключи для выбора адаптера и порта, с которым следует работать (напомним, что в разных подсетях один и тот же LID может относиться к разным устройствам). Ключ -Cпредназначен для указания адаптера (например, mlx4_0в примерах выше), а ключ -Pпозволяет указать номер порта заданного адаптера (порты нумеруются, начиная с 1).

Хранение данных

В каждый узел – управляющий, вычислительный или служебный – могут быть установлены локальные жёсткие диски. Наряду с этим возможно подключение внешних дисковых подсистем, доступ к которым будет производиться со всех узлов одновременно.

Локальные жёсткие диски могут использоваться для загрузки операционной системы, как виртуальная память (область подкачки) и для хранения временных данных. Конечно, вычислительные узлы могут и не иметь локальных дисков, если загрузка операционной системы на них организована через сеть, хотя даже в этом случае локальный диск полезен для области подкачки и хранения временных данных. На управляющем узле локальные жёсткие диски обычно устанавливаются, а сетевая загрузка при этом не предусматривается.

На внешних системах хранения данных (далее – СХД) обычно располагаются программные пакеты и утилиты, запуск которых требуется на всех узлах, а также домашние каталоги пользователей, временные хранилища общего доступа (для хранения временных данных расчётов) и прочие данные, которые должны быть доступны со всех узлов. Внешние СХД обычно различаются по внутреннему устройству и по способу доступа, от чего зависит уровень надёжности хранения данных и скорость доступа к ним. Внутреннее устройство СХД мы разбирать здесь не будем, упомянем лишь различные способы доступа.

По способу доступа СХД разделяются как минимум на три типа:

• непосредственно подключённая СХД – Direct Attached Storage или DAS;

• СХД с доступом по локальной сети или сетевое хранилище данных – Network Attached Storage, или NAS;

• СХД, подключённая через выделенную сеть хранения данных – Storage Area Network или SAN(см. рис. 3).

Непосредственно подключённая СХД подключается либо к выделенному узлу хранения данных, либо к управляющему узлу. Такая СХД всегда видна в операционной системе узла, к которому она подключена, как локально подключённое дисковое устройство (физическое подключение – по SATA, SAS, Fibre Channel).

Рис 3 сеть хранения данных SAN Для обеспечения отказоустойчивости и - фото 10

Рис. 3: сеть хранения данных (SAN)

Для обеспечения отказоустойчивости и повышения скорости работы в системах хранения нередко используют технологию RAID (redundant array of independent disks – избыточный массив независимых дисков). В рамках RAID несколько дисков равного объёма объединяются в один логический диск. Объединение происходит на уровне блоков (которые могут не совпадать с физическими блоками дисков). Один логический блок может отображаться на один или несколько дисковых блоков.

Есть несколько «уровней», которые приняты как стандарт de-facto для RAID:

RAID-0 – логические блоки однозначно соответствуют блокам дисков, при этом они чередуются: блок0 = блок0 первого диска, блок1 = блок1 второго диска и т. д.;

RAID-1 – зеркальный массив, логический блок N соответствует логическим блокам N всех дисков, они должны иметь одинаковое содержимое;

RAID-2 – массив с избыточностью по коду Хэмминга;

RAID-3 и -4 – дисковые массивы с чередованием и выделенным диском контрольной суммы;

RAID-5 – дисковый массив с чередованием и невыделенным диском контрольной суммы;

RAID-6 – дисковый массив с чередованием, использующий две контрольные суммы, вычисляемые двумя независимыми способами.

Уровень 0 обеспечивает наибольшую скорость последовательной записи – блоки пишутся параллельно на разные диски, но не обеспечивает отказоустойчивости; уровень 1 – наибольшую отказоустойчивость, так как выход из строя N-1 диска не приводит к потере данных.

Уровни 2, 3 и 4 в реальности не используются, так как уровень 5 даёт лучшую скорость и надёжность при той же степени избыточности. В этих уровнях блоки дисков объединяются в полосы, или страйпы(англ. stripe).

В каждом страйпе один блок выделяется для хранения контрольной суммы (для уровня 6 – два страйпа), а остальные – для данных, при этом диск, используемый для контрольной суммы, чередуется у последовательных страйпов для выравнивания нагрузки на диски. При записи в любой блок рассчитывается контрольная сумма данных для всего страйпа, и записывается в блок контрольной суммы. Если один из дисков вышел из строя, то для чтения логического блока, который был на нём, производится чтение всего страйпа и по данным работающих блоков и контрольной суммы вычисляются данные блока.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Константин Стефанов читать все книги автора по порядку

Константин Стефанов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Cуперкомпьютеры: администрирование отзывы


Отзывы читателей о книге Cуперкомпьютеры: администрирование, автор: Константин Стефанов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x