Владимир Онищенко - Справочник строительных материалов, а также изделий и оборудования для строительства и ремонта квартиры
- Название:Справочник строительных материалов, а также изделий и оборудования для строительства и ремонта квартиры
- Автор:
- Жанр:
- Издательство:Литагент «Фолио»3ae616f4-1380-11e2-86b3-b737ee03444a
- Год:2009
- Город:Харьков
- ISBN:978-966-03-4878-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Онищенко - Справочник строительных материалов, а также изделий и оборудования для строительства и ремонта квартиры краткое содержание
ок современных строительных материалов не просто велик – он огромен, и порой даже профессионалу нелегко разобраться во всем ассортименте предлагаемых товаров. Если вы решили сделать ремонт у себя в доме, вам поможет этот справочник. В нем дана информация о строительных и отделочных материалах, которые позволят вам изменить ваш дом по вашему желанию. Ну а если вы все же захотите доверить ремонт вашего жилища профессионалам, то и в этом случае эта книга не будет лишней – изучив ее, вы сможете разговаривать с мастерами «на одном языке», чтобы понимать то, что они вам предлагают.
Справочник строительных материалов, а также изделий и оборудования для строительства и ремонта квартиры - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Отношение предела прочности при сжатии материала, насыщенного водой, к пределу прочности при сжатии материала в сухом состоянии называется коэффициентом размягчения (К азм). Этот коэффициент характеризует водостойкость материала. Для легко-размокаемых материалов (глина) К разм= 0, для материалов (металл, стекло), которые полностью сохраняют свою прочность при действии воды, К разм= 1. Материалы с К разм>0,8 относят к водостойким; материалы с К разм< 0,8 в местах, подверженных систематическому увлажнению, применять не разрешается.
Влагоотдача – способность материала отдавать влагу. Материалы, находясь на воздухе, сохраняют свою влажность только при условии определенной, так называемой равновесной относительной влажности воздуха. Если же влажность материала оказывается ниже равновесной влажности, то материал начинает отдавать влагу в окружающую среду (высушиваться). Скорость влагоотдачи зависит, во-первых, от разности между влажностью материала и относительной влажностью воздуха – чем больше разность, тем интенсивнее происходит высушивание; во-вторых, на влагоотдачу влияют свойства самого материала, характер его пористости, природа вещества. Материалы с крупными порами и гидрофобные легче отдают воду, чем мелкопористые и гидрофильные.
В естественных условиях влагоотдача строительных материалов характеризуется интенсивностью потери влаги при относительной влажности воздуха 60 % и температуре 20 °C. В воздухе в естественных условиях всегда содержится влага. Поэтому влажный материал высушивается при этих условиях не полностью, а только до равновесной влажности. Состояние материала при этом является воздушно-сухим. Древесина в комнатных условиях, где относительная влажность не превышает 60 %, имеет влажность 8—10 %, наружные стены зданий – 4–6 %. С изменением относительной влажности воздуха изменяется и влажность материалов (если последние гидрофильные).
Воздухостойкость — способность материала длительно выдерживать многократное систематическое увлажнение и высушивание без значительных деформаций и потери механической прочности. Материалы по-разному ведут себя по отношению к действию переменной влажности: разбухают при увлажнении, дают усадку при последующем высыхании, иногда возникает и коробление материала. Систематическое увлажнение и высушивание вызывают знакопеременные напряжения в материале строительных конструкций и со временем приводят к потере ими несущей способности (разрушению). Бетон в таких условиях склонен к разрушению, так как при высыхании цементный камень сжимается, а заполнитель практически не реагирует; в результате в цементном камне возникают растягивающие напряжения, он сжимается и отрывается от заполнителя. Древесина при изменении влажности подвергается знакопеременным деформациям. Повысить воздухостойкость материалов можно путем введения гидрофобных добавок, придающих материалу водоотталкивающие свойства.
Морозостойкость — способность насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и значительного снижения прочности. Систематические наблюдения показали, что многие материалы в условиях попеременного насыщения водой и замораживания постепенно разрушаются. Разрушение происходит в связи с тем, что вода, находящаяся в порах материала, при замерзании увеличивается в объеме примерно до 9 %. Наибольшее расширение воды при переходе в лед наблюдается при температуре -4 °C; дальнейшее понижение температуры не вызывает увеличения объема льда. При заполнении пор водой и ее замерзании стенки пор начинают испытывать значительные напряжения и могут разрушаться. Определение степени морозостойкости материала производят путем замораживания насыщенных водой образцов при температуре от -15 до -17 °C и последующего их оттаивания. Такую низкую температуру опыта принимают по той причине, что вода в тонких капиллярах замерзает только при -10 °C.
Морозостойкость материала зависит от плотности и степени насыщения водой их пор. Плотные материалы морозостойки. Из пористых материалов морозостойкостью обладают только такие, у которых имеются в основном закрытые поры или вода занимает менее 90 % объема пор. Материал считают морозостойким, если после установленного числа циклов замораживания и оттаивания в насыщенном водой состоянии прочность его снизилась не более чем на 15 %, а потери в массе в результате выкрашивания не превышали 5 %. Если образцы после замораживания не имеют следов разрушения, то степень морозостойкости устанавливают по коэффициенту морозостойкости (K f).
Для морозостойких материалов K fне должен быть менее 0,75. По числу выдерживаемых циклов попеременного замораживания и оттаивания (степени морозостойкости) материалы имеют марки F10, 15, 25, 35, 50, 100, 150, 200 и более. В лабораторных условиях замораживание образцов производят в холодильных камерах. Один-два цикла замораживания в камере дают эффект, близкий к трех– пятилетнему действию атмосферы. Существует также ускоренный метод испытания, по которому образцы погружают в насыщенный раствор сернокислого натрия и затем высушивают при температуре 100–110 °C. Образующиеся при этом в порах камня кристаллы десятиводного сульфата натрия (со значительным увеличением объема) давят на стенки пор еще сильнее, чем вода при замерзании. Такое испытание является особо жестким. Один цикл испытания в растворе сернокислого натрия приравнивается к 5—10 и даже 20 циклам прямых испытаний замораживанием.
Теплопроводность – свойство материала пропускать тепло через свою толщину. Теплопроводность материала оценивают количеством тепла, проходящим через образец материала толщиной 1 м и площадью 1 м 2за 1 ч при разности температур на противоположных плоскопараллельных поверхностях образца в 1 °C. Теплопроводность материала зависит от многих факторов: природы материала, его структуры, степени пористости, характера пор, влажности и средней температуры, при которой происходит передача тепла. Материалы с закрытыми порами менее теплопроводны, нежели материалы с сообщающимися порами. Мелкопористые материалы имеют меньшую теплопроводность, чем крупнопористые. Это объясняется тем, что в крупных и сообщающихся порах возникает движение воздуха, сопровождающееся переносом тепла. Теплопроводность однородного материала зависит от плотности. Так, с уменьшением плотности материала теплопроводность уменьшается, и наоборот. Общей зависимости между плотностью материала и теплопроводностью не установлено, однако для некоторых материалов, имеющих влажность 1–7 % по объему, такая зависимость наблюдается.
Читать дальшеИнтервал:
Закладка: