В. Корогодин - Информация как основа жизни
- Название:Информация как основа жизни
- Автор:
- Жанр:
- Издательство:ИЦ Феникс
- Год:2000
- Город:Дубна
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
В. Корогодин - Информация как основа жизни краткое содержание
КОРОГОДИН В. И., КОРОГОДИНА В. Л.
ИНФОРМАЦИЯ КАК ОСНОВА ЖИЗНИ
© Авторы. В. И. Корогодин и В. Л. Корогодина, 2000 г. © Оформление. ИЦ "Феникс", 2000 г.
Книга посвящена феномену жизни и информации как внутренне присущему свойству информационных систем.
Рассматриваются свойства информации и информационных систем. Выделяются главные свойства информационных систем – способность к "целенаправленным" действиям и расслоение на информационную" и "динамическую" подсистемы.
Рассматривается динамика информации от ранних этапов эволюции физических информационных систем до систем с биологической информацией – генетической, поведенческой и логической. Особое внимание уделяется динамике биологической информации в биосфере. Одной из проблем, затрагиваемой авторами, является взаимодействие ноосферы и техносферы, связанной с автогенезом информации.
Книга рассчитана на специалистов, а также на круг читателей, интересующихся теорией информации, эволюцией, биологией и взаимоотношениями биосферы и техносферы.
KOROGODIN V. I. & KOROGODINA V. L.
Information as the Foundation of Life. – Dubna: "Phoenix" Publishing Center, 2000. – 208 p.
The book analyzes the phenomenon of life and information as an inherent quality of information systems.
Properties of information and information systems are discussed. The main properties of information systems are pointed out: the ability to act "purposefully" and the division into an "informative" and "dynamic" subsystems.
The dynamics of information is analyzed, from the early stages of physical information system evolution to the systems with biological genetic, be-haviouristic and logical information. Special attention is attached to the dynamics of biological information in biosphere. One of the problems, connected with information autogenesis and discussed by the authors, is the interaction of noosphere and technosphere with biosphere.
The book is recommended to specialists and readers who are interested in the theory of information, evolution, biology and interaction of biosphere and technosphere.
Информация как основа жизни - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Биосферу в целом можно подразделить на косные и живые компоненты. Косные компоненты – это химические соединения и физические тела, не входящие в данный момент времени в состав живых организмов. Это, прежде всего, газы, находящиеся в свободном состоянии (в атмосфере) или растворенные в водных бассейнах, вода в виде водяного пара, рек, озер, морей, океанов и ледников, различные неорганические и органические соединения, растворенные в этой воде и накапливающиеся в донных отложениях и почве, еще не претерпевшие полной деструкции отмершие компоненты живых организмов (листья, сучья, сброшенная при линьке шерсть и т. п.) и трупы самих этих организмов (от вирусов и бактерий до слонов и баобабов). По самой приблизительной оценке косные компоненты составляют более 99%, а на живые приходится меньше 1% от общей массы биосферы. Косные компоненты распределены по всей биосфере относительно диффузно. Значительное количество их включено в постоянный биологический круговорот, т. е. периодически входят в состав биоты. Химические соединения, выходящие из биологического круговорота и слагающие мощные осадочные породы, будем считать находящимися вне пределов биосферы.
В отличие от косных компонентов, живые компоненты биосферы четко структурированы. Элементарными структурами биосферы являются биоценозы, слагаемые, в свою очередь, трофически взаимодействующими популяциями, состоящими из отдельных индивидуумов.
По примерным данным, около 1% от всей биомассы Земли приходится на микроорганизмы и животных (2,3·10 16г), около 99% − на зеленые растения (2,4·10 18г). Только 0,13% биоты обитает в океанах, а остальные 99,87% − на континентах. В настоящее время на Земле известно около 100 тыс. видов микроорганизмов (бактерии, простейшие, грибы и водоросли), 150 тыс. видов высших растений и 1 млн. видов животных, из которых более 800 тыс. приходится на членистоногих. В отдельные биоценозы входят десятки и сотни взаимодействующих друг с другом видов, представленных популяциями, состоящими из сотен (для животных), тысяч (для растений) и миллионов (для микроорганизмов) особей. Жизнедеятельность этих последних (т. е. отдельных индивидуумов) и обусловливает, в конечном счете, стабильность характеристик биосферы и ее элементный состав.
Как мы уже отмечали, характерной особенностью элементного состава биосферы является его постоянный круговорот, т. е. переход из косного в живое и обратно. Можно полагать, что различные химические элементы, захваченные в период становления биосферы вихрем этого круговорота, лишь медленно вырываются из него, устремляясь в космическое пространство (молекулы газов) или выделяясь в виде водонерастворимых соединений, слагающих осадочные породы (известняки, сланцы), а также залежей углей, нефти и некоторых рудных месторождений. Столь же медленно им на смену в биосферу включаются новые атомы, извлекаемые хемотрофами из основных пород. Многократное "пропускание" через биологические компоненты одних и тех же атомов вещества есть один из основных законов функционирования биосферы. Но общее количество вещества, находящегося в "обороте", ограничено. Именно это, по-видимому, налагает основные ограничения на изменения количества живого вещества на нашей планете, определяя его постоянство.
Круговорот атомов в биосфере определяется тремя основными факторами: метаболизмом организмов, их размножением и их отмиранием. Во время становления биосферы, когда биомасса живого вещества возрастала, стремясь к своему пределу (на котором находится и по сей день), размножение, в общем, преобладало над гибелью и сопровождалось ростом дифференциации организмов по их трофическим функциям, т. е. увеличением числа видов. Этот период характеризовался вовлечением все большего количества атомов косного вещества в биологический круговорот. Однако по мере формирования биосферы, наряду с продолжающимися сменами ее видового состава и формированием все новых вариантов биоценозов, общая масса биоты возрастала все медленнее и наконец стабилизировалась на современном уровне. Произошло это не менее чем 2-3 млрд. лет тому назад.
Что положило предел этому процессу? Было ли это пределом возможности использования солнечной энергии или пределом доступности первичных источников атомов? Или это – гигантский аналог равновесия химических реакций, когда количество вновь синтезируемого продукта сравнивается с количеством разрушающегося? Или – результат насыщения "емкости" жизненного пространства? Как бы то ни было, можно полагать, что стабилизация количества биомассы на Земле была тесно связана с ускорением образования новых видов, т. е. с ускорением процесса эволюции.
Эволюционирующими единицами являются не отдельные индивиды, а популяции [6], которые образуют информационные системы 1-го рода.
Как мы помним, каждый живой организм представляет собой информационную систему 1-го рода, состоящую из генетической информации и кодируемых ею операторов – его цитоплазматических и соматических компонентов. Популяции живых организмов составлены из множества информационных систем – организмов, связанных общностью происхождения и вписанных в тот или иной биоценоз, составляющий, вместе с окружающей средой, их экологическую нишу. Популяции организмов одного и того же вида могут быть включены не только в идентичные, но также в различающиеся биоценозы, в чем проявляется полипотентность присущей им генетической информации.
Каждую популяцию, из каких бы организмов она ни состояла, можно охарактеризовать двумя параметрами: средним временем τ 1удвоения числа слагающих ее особей в условиях данной экологической ниши s и средней продолжительностью их жизни τ 2, в данных условиях. Параметр L = τ 1/τ 2= V P/V rотражает надежность системы в условиях s, обусловленную особенностями организации операторов Q1 и, следовательно, задаваемую кодирующей их генетической информацией I. Если τ1> τ2, (т. е. L > I), то, благодаря размножению организмов, происходит возрастание численности слагаемой ими популяции; при τ 1= τ 2( L = 1) наблюдается простое их воспроизведение, и численность популяции сохраняется на некотором постоянном уровне; в случае же τ 1< τ 2( L < I) преобладает отмирание, и численность популяции уменьшается.
Заметим, что при L = 1 состояние системы, представленной популяцией данных организмов Q 1, становится нестабильным, точнее − губительным для этой популяции: любые флуктуации среды обитания, в том числе сдвиги внутри экосистемы, вызывающие даже временное превышение τ 2, по сравнению с τ 1, будут приводить систему к гибели.
Читать дальшеИнтервал:
Закладка: