Александр Горкин - Энциклопедия «Техника» (с иллюстрациями)
- Название:Энциклопедия «Техника» (с иллюстрациями)
- Автор:
- Жанр:
- Издательство:Росмэн-Издат
- Год:2006
- Город:Москва
- ISBN:5-8451-1090-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Горкин - Энциклопедия «Техника» (с иллюстрациями) краткое содержание
И конечно, книга научит ребят пользоваться Интернетом и разбираться в новейших видах связи, что просто необходимо современному человеку.
Издание великолепно оформлено работами известных российских художников-иллюстраторов. Книга может стать отличным дополнительным пособием для занятий в школе и замечательным подарком маленьким мужчинам.
Энциклопедия «Техника» (с иллюстрациями) - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Асфальтобетоноукладчик
ÁТОМНАЯ ЭЛЕКТРОСТÁНЦИЯ(АЭС), электростанция, на которой ядерная энергия преобразуется в электрическую. Первичным источником энергии на АЭС служит ядерный реактор , в котором протекает управляемая цепная реакция деления ядер некоторых тяжёлых элементов. Выделяющаяся при этом теплота преобразуется в электрическую энергию, как правило, так же, как на обычных тепловых электростанциях (ТЭС). Ядерный реактор работает на ядерном топливе, в основном на уране-235, уране-233 и плутонии-239. При делении 1 г изотопов урана или плутония выделяется 22.5 тыс. кВт·ч энергии, что соответствует сжиганию почти 3 т условного топлива.
Первая в мире опытно-промышленная АЭС мощностью 5 МВт была построена в 1954 г. в России в г. Обнинске. За рубежом первая АЭС промышленного назначения мощностью 46 МВт была введена в эксплуатацию в 1956 г. в Колдер-Холле (Великобритания). К кон. 20 в. в мире действовало св. 430 энергетических ядерных реакторов общей электрической мощностью ок. 370 тыс. МВт (в т. ч. в России – 21.3 тыс. МВт). Приблизительно одна треть этих реакторов работает в США, более чем по 10 действующих реакторов имеют Япония, Германия, Канада, Швеция, Россия, Франция и др.; единичные ядерные реакторы – многие другие страны (Пакистан, Индия, Израиль и т. д.). На АЭС вырабатывается ок. 15 % всей производимой в мире электроэнергии.

Схема атомной электростанции:
1 – источник водоснабжения; 2 – насос; 3 – генератор; 4 – паровая турбина; 5 – конденсатор; 6 – деаэраторы; 7 – очиститель; 8 – клапан; 9 – теплообменник; 10 – реактор; 11 – регулятор давления
Основными причинами быстрого развития АЭС являются ограниченность запасов органического топлива, рост потребления нефти и газа для транспортных, промышленных и коммунальных нужд, а также рост цен на невозобновляемые источники энергии. Подавляющее большинство действующих АЭС имеют реакторы на тепловых нейтронах: водо-водяные (с обычной водой в качестве и замедлителя нейтронов, и теплоносителя); графитоводные (замедлитель – графит, теплоноситель – вода); графитогазовые (замедлитель – графит, теплоноситель – газ); тяжеловодные (замедлитель – тяжёлая вода, теплоноситель – обычная вода). В России строят гл. обр. графитоводные и водо-водяные реакторы, на АЭС США применяют в основном водо-водяные, в Англии – графитогазовые, в Канаде преобладают АЭС с тяжеловодными реакторами. Кпд АЭС несколько меньше, чем кпд ТЭС на органическом топливе; общий кпд АЭС с водо-водяным реактором составляет ок. 33 %, а с тяжеловодным реактором – ок. 29 %. Однако графитоводные реакторы с перегревом пара в реакторе имеют кпд, приближающийся к 40 %, что сопоставимо с кпд ТЭС. Зато АЭС, по существу, не имеет транспортных проблем: напр., АЭС мощностью 1000 МВт потребляет за год всего 100 т ядерного топлива, а аналогичной мощности ТЭС – ок. 4 млн. т угля. Самым большим недостатком реакторов на тепловых нейтронах является очень низкая эффективность использования природного урана – ок. 1 %. Коэффициент использования урана в реакторах на быстрых нейтронах гораздо выше – до 60–70 %. Это позволяет использовать делящиеся материалы с гораздо меньшим содержанием урана, даже морскую воду. Однако быстрые реакторы требуют большого количества делящегося плутония, который извлекается из выгоревших тепловыделяющих элементов при переработке отработанного ядерного топлива, что достаточно дорого и сложно.
Все реакторы АЭС снабжаются теплообменниками; насосами или газодувными установками для циркуляции теплоносителя; трубопроводами и арматурой циркуляционного контура; устройствами для перезагрузки ядерного топлива; системами специальной вентиляции, сигнализации аварийной обстановки и др. Это оборудование, как правило, находится в отсеках, отделённых от других помещений АЭС биологической защитой. Оборудование машинного зала АЭС примерно соответствует оборудованию паротурбинной ТЭС. Экономические показатели АЭС зависят от кпд реактора и другого энергетического оборудования, коэффициента использования установленной мощности за год, энергонапряжённости активной зоны реактора и т. д. Доля топливной составляющей в себестоимости вырабатываемой электроэнергии АЭС – всего 30–40 % (на ТЭС 60–70 %). Наряду с выработкой электроэнергии АЭС используются также для опреснения воды (Шевченковская АЭС в Казахстане).
ÁТОМНЫЕ ЧАСЫ́, то же, что квантовые часы .
АТОМОХÓД, общее название кораблей (надводных и подводных), имеющих в качестве основного источника энергии атомную энергетическую установку (АЭУ). Такие установки обеспечивают атомоходам бо́льшую по сравнению с обычными судами дальность плавания без пополнения запасов топлива; возможность увеличения скорости хода судна без существенного повышения затрат на топливо; концентрацию большой мощности в одном агрегате. Недостатком современных АЭУ является сравнительно высокая их стоимость и низкая рентабельность.
Основа АЭУ – ядерный реактор . Обычно используют водо-водяные реакторы с двухконтурной схемой. При двухконтурной схеме замкнутая циркулирующая в реакторе вода (теплоноситель) отдаёт своё тепло в парогенераторе воде, образующийся пар поступает в турбину. Атомная установка на судне размещается в отдельном отсеке, вход в который осуществляется через санпропускник. Атомная паропроизводящая установка (АППУ) российских атомных ледоколов состоит из двух автономных блоков, каждый из которых включает один реактор и четыре пары генераторов. Масса АППУ ледоколов с железоводяной защитой ок. 2300 т.
Применение АЭУ на судах потребовало решения проблем, не возникавших ранее перед судостроителями. Главная проблема определилась радиоактивным излучением реакторов и опасностью неконтролируемой утечки радиоактивности, которая могла привести к облучению экипажа и радиоактивному заражению окружающей среды. Различные аварии, нередкие на обычных судах, на атомоходах могут иметь опасные последствия. Напр., столкновения и посадки на мель обычных судов, не имеющие тяжёлых последствий, для атомоходов могут окончиться трагически, если не будет предусмотрено специальной системы защитных мер. Поэтому Международная конференция по защите человеческой жизни на море уже в 1960 г. разработала основные рекомендации по обеспечению безопасности судов с АЭУ.
Первым судном с атомной энергетической установкой была подводная лодка «Наутилус», построенная в США в 1954 г. Первое гражданское судно – ледокол «Ленин» – построено в Советском Союзе в 1959 г. В том же году вошла в строй первая отечественная подводная лодка с ядерной силовой установкой – «Ленинский комсомол». Опыт эксплуатации ледокола «Ленин» подтвердил целесообразность использования атомной энергии для движения судов, что открыло новый этап в развитии морского судостроения. В 1962 г. в США построен грузопассажирский атомоход «Савана». Позднее, в 1968 г., в Западной Германии спущено на воду судно «Отто Ган», в Японии в 1969 г. – судно «Мутсу». Одновременно с постройкой гражданских судов шло интенсивное строительство атомных кораблей: десятки атомных субмарин различного назначения построены в США, СССР, Англии, Франции. Мощные надводные корабли с АЭУ – крейсеры и авианосцы – строились в США, СССР и Франции. В 1980 г. в нашей стране построена самая большая в мире подводная лодка «Тайфун» подводным водоизмещением 25 тыс. т. Из гражданских судов в первую очередь строятся арктические ледоколы, в т. ч. отечественные «Арктика» мощностью 49 тыс. кВт, «Таймыр» мощностью 32.5 тыс. кВт, а также арктический атомный ледокольно-транспортный лихтеровоз «Севморпуть».
Читать дальшеИнтервал:
Закладка: