Татьяна Тихоплав - Идущие по пустыне: время
- Название:Идущие по пустыне: время
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2016
- Город:Санкт-Петербург
- ISBN:978-5-9573-3104-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Татьяна Тихоплав - Идущие по пустыне: время краткое содержание
Идущие по пустыне: время - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Итак, существуют два типа самоорганизации: когерентный для коллективных (макро-) открытых систем (по Пригожину) и континуальный для индивидуальных (микро) систем (по Руденко). Эволюция с естественным отбором возможна только как саморазвитие континуальной самоорганизации индивидуальных систем.
В том и в другом случае основными свойствами самоорганизующихся систем являются: открытость, необратимость, неравновесность, нелинейность и диссипативность.
Свойства самоорганизующихся систем
Открытые системы – это системы, которые способны постоянно обмениваться веществом (энергией, информацией) с окружающей средой и обладать как «источниками» – зонами подпитки системы энергией окружающей среды, так и «стоками» – зонами рассеяния, «сброса» энергии вовне.
Действие «источников» (притока энергии извне) способствует наращиванию структурной неоднородности данной системы, а действие «стоков» (сброс энергии вовне) приводит к сглаживанию структурных неоднородностей в системе.
Приток и сток обычно носят объемный характер, то есть происходят в каждой точке данной системы. Например, во всех компонентах биологического организма (ткани, органы, клетки и т. д.) происходит обмен веществ, приток и отток вещества (с помощью кровеносных сосудов, эндокринной и других систем). Постоянный приток (и сток) вещества, энергии или информации является необходимым условием существования неравновесных, неустойчивых состояний.
Способность живых организмов поддерживать на определенном уровне состояние своего внутреннего порядка есть не что иное, как борьба с повышением энтропии, или борьба за свое существование. Живые организмы (клетка, сообщество людей, город и т. д.) не только открытые системы, но они и существуют только потому, что открытые. Их питают потоки энергии и вещества, которые поступают из внешнего мира. Так, например, закрытую систему «кристалл» можно изолировать, но если изолировать клетку или город от внешнего мира, они погибнут.
Открытые системы – это системы необратимые; и в них важен фактор времени.
Процессы могут быть обратимые и необратимые. Как трактует Википедия, обратимый процесс (то есть равновесный) – это термодинамический процесс, который может проходить как в прямом, так и в обратном направлении через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений.
Необходимое условие обратимости термодинамического процесса – его равновесность, то есть всякий обратимый процесс всегда является равновесным, или квазистатическим. Однако не всякий равновесный процесс обязательно обратим (например, квазистатический процесс равномерного движения тела по горизонтальной шероховатой поверхности под действием взаимно уравновешивающихся сил тяги и трения – процесс необратимый).
Характерная особенность обратимых процессов – их медленность: процесс должен быть настолько медленным, чтобы участвующие в процессе тела успевали в каждый момент времени оказываться в состоянии равновесия, соответствующего имеющимся в этот момент внешним условиям. То есть обратимый процесс – это непрерывная последовательность равновесных состояний.
В системе тел, находящихся в равновесии, без внешнего вмешательства никаких процессов происходить не может, то есть с помощью тел, находящихся в тепловом равновесии, нельзя произвести никакой работы, т. к. работа связана с механическим движением, то есть с переходом внутренней энергии в кинетическую энергию. Стоит подчеркнуть еще раз, что невозможно получить работу за счет энергии тел, находящихся в тепловом равновесии.
На практике обратимый процесс реализовать невозможно. Он протекает бесконечно медленно, и можно только приблизиться к нему. Обратимые процессы – это идеализация реальных процессов.
Следует отметить, что термодинамическая обратимость процесса отличается от химической обратимости. Химическая обратимость характеризует направление процесса, а термодинамическая – способ его проведения.
Необратимым называется процесс, который нельзя провести в противоположном направлении через все те же самые промежуточные состояния (Википедия).
По существу, все процессы в макросистемах являются необратимыми, а все необратимые процессы – неравновесными. Все процессы, сопровождающиеся трением, а также явления диффузии и растворения, теплопроводность, вязкое течение – необратимые. Переход кинетической энергии макроскопического движения через трение в теплоту, то есть во внутреннюю энергию системы, является необратимым процессом.
Например, ваза падает, разбиваясь на осколки, но самопроизвольно разбившаяся ваза восстановиться из осколков не может. Этот процесс можно наблюдать, если, предварительно засняв падение на пленку, просмотреть ее в обратном направлении, но никак не в действительности.
Так же тепло самопроизвольно переходит от более нагретого тела к холодному, а обратный процесс, как известно, невозможен, то есть процесс необратим. Тепловые процессы вообще являются необратимыми.
В замкнутых системах необратимые процессы всегда сопровождаются возрастанием энтропии, что является критерием необратимого процесса.
В открытых системах, которые могут обмениваться энергией или веществом с окружающей средой, при необратимом процессе энтропия системы, которая складывается из полного производства ее в системе и изменения из-за вытекания (или втекания) через поверхность системы, может оставаться постоянной или даже убывать.
Термодинамическая система может находиться в равновесном или в неравновесном состоянии.
Как трактует Википедия, термодинамическое равновесие – это состояние системы, при котором остаются неизменными по времени макроскопические параметры (температура, давление, объем, энтропия) в условиях изолированности от окружающей среды. В общем-то, эти величины не являются постоянными, они флуктуируют (колеблются) возле своих средних значений. В состоянии равновесия в системе отсутствуют потоки материи или энергии, неравновесные потенциалы (или движущие силы), изменения количества присутствующих фаз. Примером равновесной закрытой структуры являются кристаллы.
Длительное время в состоянии равновесия могут находиться лишь закрытые системы, не имеющие связей с внешней средой, тогда как для открытых систем равновесие может быть только мигом в процессе непрерывных изменений. Равновесные системы не способны к развитию и самоорганизации, поскольку подавляют отклонения от своего стационарного состояния, тогда как развитие и самоорганизация предполагают качественное его изменение.
Читать дальшеИнтервал:
Закладка: