Сергей Доронин - Квантовая магия

Тут можно читать онлайн Сергей Доронин - Квантовая магия - бесплатно ознакомительный отрывок. Жанр: Эзотерика, издательство Весь, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Квантовая магия
  • Автор:
  • Жанр:
  • Издательство:
    Весь
  • Год:
    2007
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-9573-0844-7
  • Рейтинг:
    3.1/5. Голосов: 201
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Сергей Доронин - Квантовая магия краткое содержание

Квантовая магия - описание и краткое содержание, автор Сергей Доронин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Квантовая механика перестала быть областью лабораторных исследований — ее законы действуют в мире здесь и сейчас! Принципы, работающие на микроуровне элементарных частиц, распространяются и на макросистемы. Они противоречат здравому смыслу, доставшемуся нам в наследство от классической физики, и кажутся магией. Но это уже реальность.

Квантовая магия - читать онлайн бесплатно ознакомительный отрывок

Квантовая магия - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Сергей Доронин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В последнее время экспериментаторы начали восполнять этот пробел и интенсивно работают над квантовой шиной. «Летающие» кубиты стали объектом исследований во многих физических лабораториях. В 2004–2005 годах только в одном Nature публикации с результатами экспериментальных работ в этом направлении составляли уже довольно внушительный список [127], в который нужно добавить все работы по квантовой памяти, поскольку процессы хранения и передачи квантовой информации неразрывно связаны.

Последние три статьи из этого списка опубликованы в одном номере Nature(8 декабря 2005 года). В первой из них говорилось о методике создания запутанного состояния между двумя пространственно разнесенными объектами. Ее авторы сообщали о запутывании двух систем, состоящих из порядка 10 5атомов, удаленных друг от друга на 2,8 м. В двух других статьях описывался реализованный на практике процесс передачи квантовой информации от одного атомного ансамбля к другому посредством фотонных кубитов. Причем исследователи осуществили всю цепочку операций, необходимых для устойчивой квантовой связи. А именно — управляемую генерацию единичного фотона в одном узле (в ансамбле атомов рубидия); пересылку по оптоволокну на 100 мк другому узлу, где квантовая информация некоторое время хранилась в коллективном нелокальном состоянии, а затем она была вновь восстановлена в виде фотона без существенной потери квантовой информации. По существу была создана примитивная квантовая сеть между двумя разнесенными узлами. Предполагается, что такие квантовые сети постепенно придут на смену классическим. Информация, которую мы получаем сейчас по Интернету, доходит до нас по оптическим волокнам закодированнойв сантиметровые лазерные импульсы. Все идет к тому, что эту информацию вскоре научатся передавать не в виде обычных битов, а в квантовой форме — посредством кубитов. Таким образом, физики продемонстрировали возможность телепортациисостояния на длинные расстояния, и, следовательно, квантовые сети посредством телепортациимогут связать нелокальными корреляциями удаленные узлы в единое целое.

В начале 2006 года в Phys. Rev. Lett., также в одном номере [128], были опубликованы две статьи об экспериментальных работах, продолжающих эти исследования. Но в них основной упор делается уже на технические детали — такие, как выбор оптимальной длины волны единичных фотонов, подходящей для коммуникации на больших расстояниях: в первой работе использовалась длина волны 1,5 микрон, во второй 0,78 микрон.

Таким образом, «летающие» или курсирующие по оптоволокну кубиты постепенно становятся обыденной реальностью, и их создание уже не считается большим научным достижением.

В этой области делаются также первые шаги к промышленным технологиям. Ученые из Кембриджа (Великобритания) экспериментально продемонстрировали [129]возможность получения запутанных фотонных пар при помощи простых полупроводниковых светодиодов. Эти запутанные пары могут применяться, в том числе, и в схемах квантовой коммуникации, курсируя по квантовым шинам и связывая нелокальными корреляциями отдельные узлы. Как пишут авторы, такая генерация запутанных пар «по требованию» обладает существенными преимуществами перед другими способами их получения и может найти широкое применение в различных квантово-информационных устройствах.

На этом я закончу краткий обзор экспериментальных исследований и разработок «железа» для квантового компьютера.

По мнению многих ученых, работающих в области квантового компьютинга, результаты научных разработок приблизятся к стадии коммерческого применения примерно к 2020 году. К этому же времени будет достигнут предел в существующей полупроводниковой технологии, поскольку уже сейчас дорожки, по которым внутри процессоров распространяется электрический сигнал, имеют ширину, составляющую сотни атомов. Дальнейшее их сужение возможно лишь до определенного предела. Уже сейчас начинают появляться фирмы, которые, ориентируясь на перспективу, планируют связать свою основную деятельность сквантовым компьютингом. Например, в Санта-Барбаре (штат Калифорния, США) основана первая коммерческая компания — Quantumatics [130], которая собирается работать в области квантовых вычислений. Quantumaticsпланирует получать прибыль там, где прежде доминировали работы исследовательского и академического характера. Фирму возглавил физик Джованни Росса ( GiovanniA. della Rossa). Он не является новичком в организации компаний, опирающихся на высокие технологии, в частности, в 1980 году он основал Eidos— первую компанию в Италии, специализирующуюся на компьютерной графике. По поводу своих планов он говорит так: «Я собираюсь создать первое поколение квантовых компьютеров — „машин“, которые могут быть использованы как для развития собственно вычислений, так и для развития физики. Физика должна быть лучше изучена на квантовом уровне, и никакой другой инструмент не подойдет для этой цели лучше, чем квантовый компьютер!»

4.4. Языки программирования для квантового компьютера

К настоящему времени уже появились первые языки программирования для квантового компьютера, в частности, QCL ( Quantum Computation Language). Как пишут разработчики языка в документации [131], квантовые вычисления сейчас все еще рассматривают как специальную дисциплину в рамках теоретической физики, несмотря на точто она имеет много общего с классической информатикой. Одна из причин того, что сообщество программистов медленно принимает квантовые вычисления — запутывающее разнообразие формализма ( дираковскиеобозначения, матрицы плотности, гейты, операторы и т. д.). Все эти теоретические инструменты не имеют ничего общего с классическими языками программирования, а изложение самих основ квантовых вычислений часто слишком усложнено. В результате программисты испытывают трудности при моделировании квантовых логических операций знакомыми им средствами. QCL пытается восполнить этот пробел: это архитектурно независимый язык программирования высокого уровня для квантовых компьютеров с синтаксисом, заимствованным от таких классических языков, как C или Паскаль. Этот синтез теории квантовых вычислений и обычных языков программирования обеспечивает моделирование и полное выполнение квантовых алгоритмов (включая классические компоненты) в одном совместимом формализме.

По аналогии с классической машиной Тьюринга [132], в квантовых вычислениях рассматривается квантовая машина Тьюринга. Классическая (булева) логика обобщается квантовыми гейтами, а квантовым унитарным операторам ставятся в соответствие частично рекурсивные функции.

Очевидно, что моделирование квантового компьютера на традиционном классическом компьютере — неразрешимая проблема. Требуемые ресурсы растут по экспоненте с количеством квантовых регистров памяти при моделировании. Операции даже с несколькими десятками кубитов выходят за пределы возможностей любого самого мощного суперкомпьютера, а добавление одного нового кубита каждый раз удваивает необходимые ресурсы. Поэтому естественно, что на QCL можно пока программировать только очень «маленькие» квантовые компьютеры. Но и этого достаточно, чтобы апробировать основные алгоритмы квантовых вычислений и отработать их прежде, чем появится возможность их применения на полноценных квантовых компьютерах.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Сергей Доронин читать все книги автора по порядку

Сергей Доронин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Квантовая магия отзывы


Отзывы читателей о книге Квантовая магия, автор: Сергей Доронин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x