Лиза Заикина - Научные исследования

Тут можно читать онлайн Лиза Заикина - Научные исследования - бесплатно ознакомительный отрывок. Жанр: Русское современное, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Лиза Заикина - Научные исследования краткое содержание

Научные исследования - описание и краткое содержание, автор Лиза Заикина, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Я с детства испытывала огромное пристрастие к науке. В два года мое стремление скорее научиться читать было важнее игрушек. Уже тогда во мне зарождалась любовь к математике. В младших классах после школы я писала свои математические теоремы, формулы и их доказательства мелом на стене доме. Я просто хотела писать формулу за формулой так, как просила душа. В школе я учила больше, чем требовалось. Одним летом, когда все дети гуляли, будучи уже повзрослевшими, я каждый день с утра до ночи читала классику. На третьем курсе института меня приняли в ученый совет, правда, тогда я не стремилась к этому, поэтому статус оказался для меня пустым местом.

Научные исследования - читать онлайн бесплатно ознакомительный отрывок

Научные исследования - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Лиза Заикина
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мn-1<���Мn<���Мn-1

Доказательство:

Представим квадрат в виде М4, в квадрат поместили круг Мn, чтобы в круг поместить вновь квадрат М4, он должен представлять собой величину M4<���Мn<���М4.

Пример. Дети вырезали несколько треугольников. Потом решили из треугольников вырезать новые треугольники, а из них уже круги. Могут ли дети из круга вновь вырезать треугольники?

Решение: Представим треугольник в виде М3, а круг – Mn, тогда согласно условию М3

Ответ: Дети могут из круга вырезать новые треугольники.

Теорема 6. N-е количество прямоугольников Т будет представлять собой квадрат P, если прямоугольники Tn имеют необходимый размер R, вычислить который позволяют данные квадрата.

Тn=P, если R=P-Tn=0

Доказательство:

Пусть T1+T2+…+Tn=P, то R=P-T1-T2-…-Tn=0. Для того чтобы N-е количество прямоугольников Т представляло собой квадрат P, необходимо определить размер R. Объединим две формулы в одну R=P-T1-T2-…-Tn=T1+T2+…+Tn-T1-T2-…-Tn=0 и получим равенство прямоугольников Tn с квадратом.

Пример. Ребята имели 5 машинок, которые хотели поместить в коробку, имеющую квадратное дно. Сколько машинок поместится в коробку?

Решение: Т=5, P – квадратное дно, R-?

Используя общую формулу R=P-Tn, получим R=P-5. То есть размер пяти прямоугольников будет равен размеру квадрата.

Ответ: Чтобы вычислить количество машинок, необходимо знать размер коробок и машинок.

Теорема 7. Увеличение фигуры F с точностью пропорционально ее центра, меняет форму фигуры на P. Радиус R в любом месте может иметь и другое значение R1. От радиуса R зависит неизменность фигуры.

F=F, но F*Ri=P

Доказательство:

Пусть фигура F – круг. Увеличивая радиус R пропорционально центра круга, нужно учитывать, что радиус может измениться. Следовательно, F*Ri=P, где Р – это уже не круг.

Пример. Мальчик на дороге нарисовал мелом круг, затем вокруг первого круга второй круг, но получился овал. Почему у мальчика получился овал, а не круг?

Решение: F круг, P-овал, R-?

Используя общую формулу F*Ri=P, получим Ri=P/F. Когда мальчик рисовал круг, его радиус был непостоянен.

Ответ: У мальчика получился овал, а не круг, потому что он не смог увеличить радиус круга с одинаковой точностью от центра.

Теорема 8. Множество точек Хn образует фигуру P, которая определяет их расположение. На расположение точек оказывают влияние и разные факторы f. Таким образом точки Хn под влиянием факторов f образуют ту или иную фигуру P.

Х1*f+Х2*f+…+Хn*f=P

Доказательство:

Пусть мы имеем две точки Х1 и Х2, на одну из точек повлиял фактор f, тогда мы получим фигуру Р согласно формуле Х1*f+Х2 =P.

Пример. Работник имел 130 кирпичей для строительства стены. 1 кирпича он недосчитался, 2 – у него раскололись. Получилось ли у работника построить стену, если для ее строительства требовалось 100 кирпичей.

Решение: Х1=130, Х2=-1 (недосчет), Х3=-2 (раскололись), Р=?

Используя формулу Х1*f+Х2*f+…+Хn*f=P, получим 130+(-1)*недосчет+(-2)*раскололись=127. Известно, что для строительства стены требовалось 100 кирпичей. Значит 127-100=27. Стена будет построена, и 27 кирпичей останутся лишними.

Ответ: У работника получилось построить стену.

Теорема 9. Мы не можем доказать равенство фигур А=В по признакам i. Любой признак i может оказаться ошибочным.

Аi=Вi, где i – число непостоянное

Доказательство: Пусть фигуры А, В имеют два признака – 2*i, тогда А2*i =В2*i. Из-за непостоянности числа i любой из признаков может быть ошибочным i*0. Получаем А2*i =В2*i*0, А2*i =0. Следовательно, А=0 и не равно В.

Пример. Мальчику подарили две одинаковых игрушечных машины, но одна машина сломалась. После ремонта у сломанной машины изменился вид. Сколько у мальчика было одинаковых машин?

Решение: А – рабочая машина, В – машина после ремонта, i*1 – рабочая, i*0 после ремонта. Используя формулу Аi=Вi, получим Аi*1=Вi*0 и Аi*1=0, то есть А – машина без ремонта.

Ответ: У мальчика были две разных рабочих машины.

Теорема 10. Расстояние I, пройденное от предметов An, зависит от размера предметов An*R.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Лиза Заикина читать все книги автора по порядку

Лиза Заикина - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Научные исследования отзывы


Отзывы читателей о книге Научные исследования, автор: Лиза Заикина. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x