Полина Лосева - Против часовой стрелки. Что такое старение и как с ним бороться
- Название:Против часовой стрелки. Что такое старение и как с ним бороться
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2020
- Город:Москва
- ISBN:978-5-0013-9314-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Полина Лосева - Против часовой стрелки. Что такое старение и как с ним бороться краткое содержание
В своей книге биолог и научный журналист Полина Лосева выступает в роли адвоката современной науки о старении и рассказывает о том, чем сегодня занимаются геронтологи и как правильно интерпретировать полученные ими результаты. Кто виноват в том, что мы стареем? Что может стать нашей защитой от старости: теломераза или антиоксиданты, гормоны или диеты? Биологи пока не пришли к единому ответу на эти вопросы, и читателю, если он решится перейти от размышлений к действиям, предстоит сделать собственный выбор.
Эта книга станет путеводителем по современным теориям старения не только для биологов, но и для всех, кому интересно, как помочь своему телу вести неравную борьбу со временем.
Против часовой стрелки. Что такое старение и как с ним бороться - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
629
Nelson P. & Masel J. Intercellular competition and the inevitability of multicellular aging // PNAS. 2017 Dec; 114 (49): 12982–12987.
630
Gems D. The aging-disease false dichotomy: understanding senescence as pathology // Frontiers in Genetics. 2015 Jun; 6: 212.
631
Blagosklonny M. V. Answering the ultimate question "What is the Proximal Cause of Aging?" // Aging. 2012 Dec; 4 (12): 861–877.
632
См. п.178.
633
Blagosklonny M. V. Aging and immortality: quasi-programmed senescence and its pharmacologic inhibition // Cell Cycle. 2006 Sep; 5 (18): 2087–2102.
634
Kapahi P. et al. With TOR, less is more: a key role for the conserved nutrient-sensing tor pathway in aging // Cell Metabolism. 2010 Jun; 11 (6): 453–465.
635
Valvezan A. J. & Manning B. D. Molecular logic of mTORC1 signalling as a metabolic rheostat // Nature Metabolism. 2019 Mar; 1: 321–333.
636
См. п. 205.
637
Wiley C. D. & Campisi J. From ancient pathways to aging cells – connecting metabolism and cellular senescence // Cell Metabolism. 2016 Jun; 23 (6): 1013–1021.
638
Møller N. et al. Effects of growth hormone on glucose metabolism // Hormone Research. 1991; 36 (suppl 1): 32–35.
639
Kim S.-H. & Park M.-J. Effects of growth hormone on glucose metabolism and insulin resistance in human // Annals of Pediatric Endocrinology & Metabolism. 2017 Sep; 22 (3): 145–152.
640
Cohen E. & Dillin A. The insulin paradox: aging, proteotoxicity and neurodegeneration // Nature Reviews Neuroscience. 2008 Sep; 9: 759–767.
641
Bartke A. Impact of reduced insulin‐like growth factor‐1/insulin signaling on aging in mammals: novel findings // Aging Cell. 2008 Mar; 7 (3): 285–290.
642
Chesnokova V. et al. Excess growth hormone suppresses DNA damage repair in epithelial cells // Journal of Clinical Investigations. 2019 Feb; 4 (3): e125762.
643
Bartke A. Growth hormone and aging: updated review // World Journal of Mens Health. 2019 Jan; 37 (1): 19–30.
644
Laron Z., Kauli R., Lapkina L., Werner H. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome // Mutation Research/Reviews in Mutation Research. 2017 Apr – Jun; 772: 123–133.
645
Guevara-Aguirre J. et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer and diabetes in humans // Science Translation Medicine. 2011 Feb; 3 (70): 70ra13.
646
Laron Z. Lifespan and mortality of patients with Laron syndrome //Laron Z., Kopchick J. (eds) Laron Syndrome – From Man to Mouse. Springer, Berlin, Heidelberg, 2011. Pp. 341–342.
647
Laron Z. Do deficiencies in growth hormone and insulin-like growth factor-1 (IGF-1) shorten or prolong longevity? // Mechanisms of Ageing and Development. 2005 Feb; 126 (2): 305–307.
648
Seim I. et al. Genome analysis reveals insights into physiology and longevity of the Brandt's bat Myotis brandtii // Nature Communications. 2013 Aug; 4: 2212.
649
Riera C. E. & Dillin A. Emerging role of sensory perception in aging and metabolism // Trends in Endocrinology & Metabolism. 2016 May; 27 (5): 294–303.
650
Chopan M. & Littenberg B. The association of hot red chili pepper consumption and mortality: a large population-based cohort study // PLOS One. 2017 Jan; 12 (1): e0169876.
651
Riera C. E. et al. TRPV1 pain receptors regulate longevity and metabolism by neuropeptide signaling // Cell. 2014 May; 157 (5): 1023–1036.
652
Park T. J. et al. Selective inflammatory pain insensitivity in the African naked mole-rat ( Heterocephalus glaber ) // 2008 Jan; 6 (1): e13.
653
Chakraborty T. S. et al. Sensory perception of dead conspecifics induces aversive cues and modulates lifespan through serotonin in Drosophila // Nature Communications. 2019 May; 10: 2365.
654
Kuo T.-H. et al. insulin signaling mediates sexual attractiveness in Drosophila // PLOS Genetics. 2012 Apr; 8 (4): e1002684.
655
Booth L. N., Maures T. J., Yeo R. W., Tantilert C., Brunet A. Self-sperm induce resistance to the detrimental effects of sexual encounters with males in hermaphroditic nematodes // eLife. 2019 Jul; 8: e46418.
656
Gendron C. M. et al. Drosophila life span and physiology are modulated by sexual perception and reward // Science. 2014 Jan; 343 (6170): 544–548.
657
Ruben M. A. et al. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine // Science Translational Medicine. 2018 Sep; 10 (458): eaat8806.
658
Longo V. D. & Panda S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan // Cell Metabolism. 2016 Jun; 23 (6): 1048–1059.
659
Zheng X. & Sehgal A. AKT and TOR signaling set the pace of the circadian pacemaker // Current Biology. 2010 Jul; 20 (13): 1203–1208.
660
Karlsson B., Knutsson A., Lindahl B. Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27 485 people // Occupational & Environmental Medicine. 2001 Nov; 58: 747–752.
661
Lee Y. et al. G1/S cell cycle regulators mediate effects of circadian dysregulation on tumor growth and provide targets for timed anticancer treatment // PLOS Biology. 2019 Apr; 17 (4): e3000228.
662
Kelly J. J., Lanier A. P., Alberts S., Wiggins C. L. Differences in cancer incidence among Indians in Alaska and New Mexico and U. S. Whites, 1993–2002 // Cancer Epidemiology, Biomarkers & Prevention. 2006 Aug; 15 (8): 1515–1519.
663
Young T. K., Kelly J. J., Friborg J., Soininen L., Wong K. O. Cancer among circumpolar populations: an emerging public health concern // International Journal of Circumpolar Health. 2016 Jan; 75 (1): 29787.
664
Shen J. & Tower J. Effects of light on aging and longevity // Ageing Research Reviews. 2019 Aug; 53: 100913.
665
Ahmed R. et al. Replicative senescent human cells possess altered circadian clocks with a prolonged period and delayed peak-time // Aging. 2019 Feb; 11 (3): 950–973.
666
Hindhede M. The effect of food restriction during war on mortality in Copenhagen // JAMA. 1920 Feb; 74 (6): 381–382.
667
Storm A., Jensen R. A., Oslo M. D. Mortality from circulatory diseases in Norway 1940–1945 // The Lancet. 1951 Jan; 257 (6647): 126–129.
668
Willcox B. J. et al. Caloric restriction, the traditional okinawan diet, and healthy aging // Annals of the New York Academy of Sciences. 2007 Nov, 1114 (1): 434–455.
669
Kagawa Y. Impact of westernization on the nutrition of Japanese: Changes in physique, cancer, longevity and centenarians // Preventive Medicine. 1978 Jun; 7 (2): 205–217.
670
McCay C. M., Maynard L. A., Sperling G., Barnes L. L. Retarded growth, life span, ultimate body size and age changes in the albino rat after feeding diets restricted in calories: four figures // The Journal of Nutrition. 1939 Jul; 18 (1): 1–13.
671
Lee C. & Longo V. Dietary restriction with and without caloric restriction for healthy aging // F1000Research. 2015 Jan; 5: 117.
672
Swindell W. R. Dietary restriction in rats and mice: a meta-analysis and review of the evidence for genotype-dependent effects on lifespan // Ageing Research Reviews. 2012 Apr; 11 (2): 254–270.
673
Colman R. J. et al. Caloric restriction delays disease onset and mortality in rhesus monkeys // Science. 2009 Jul; 325 (5937): 201–204.
674
Mattison J. A. et al. Impact of caloric restriction on health and survival in rhesus monkeys: the NIA study // Nature. 2012 Sep; 489: 7415.
675
Wang T. et al. Quantitative translation of dog-to-human aging by conserved remodeling of epigenetic networks // bioRxiv. 2019 Nov.
676
Gribble K. E., Moran B. M., Jones S., Corey E. L., Welch D. B. M. Congeneric variability in lifespan extension and onset of senescence suggest active regulation of aging in response to low temperature // Experimental Gerontology. 2018 Dec; 114: 99–106.
677
Allen B. D. et al. Hyperadrenocorticism of calorie restriction contributes to its anti‐inflammatory action in mice // Aging Cell. 2019 Apr; 18 (3): e12944.
678
См. п. 208.
679
Kopeina G. S., Senichkin V. V., Zhivotovsky B. Caloric restriction – A promising anti-cancer approach: From molecular mechanisms to clinical trials // Biochimica et Biophysica Acta. Reviews on Cancer. 2017 Jan; 1867 (1): 29–41.
680
Kalm L. M., Semba R. D. They starved so that others be better fed: remembering Ancel Keys and the Minnesota experiment // Journal of Nutrition. 2005 Jun; 135 (6): 1347–1352.
681
Walford R. L., Mock D., Verdery R., MacCallum T. Calorie restriction in Biosphere 2: alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period // The Journals of Gerontology: Series A. 2002 Jun; 57 (6): B211–B224.
682
Ravussin E. et al. A 2-year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of health span and longevity // Journals of Gerontology: Series A. 2015 Sep; 70 (9): 1097–110.
683
Fontana L. et al. Effects of 2‐year calorie restriction on circulating levels of IGF‐1, IGF‐binding proteins and cortisol in nonobese men and women: a randomized clinical trial // Aging Cell. 2016 Feb; 15 (1): 22–27.
684
Franceschi C. Ostan R., Santoro A. Nutrition and inflammation: are centenarians similar to individuals on calorie-restricted diets? // Annual Review of Nutrition. 2018 May; 38 (1): 329–356.
685
Urlacher S. S. et al. Constraint and trade-offs regulate energy expenditure during childhood // Science Advances. 2019 Dec; 5 (12): eaax1065.
686
Solon-Biet S. M. et al. Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control // Nature Metabolism. 2019 Apr; 1: 532–545.
687
См. п. 255.
688
Walters R. O. et al. Sarcosine is uniquely modulated by aging and dietary restriction in rodents and humans // Cell Reports. 2018 Oct; 25 (3): 663–676. E6.
Читать дальшеИнтервал:
Закладка: