Дмитрий Сахаров - Генеалогия нейронов
- Название:Генеалогия нейронов
- Автор:
- Жанр:
- Издательство:Издательство «Наука»
- Год:1974
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дмитрий Сахаров - Генеалогия нейронов краткое содержание
Д. А. САХАРОВ
ГЕНЕАЛОГИЯ НЕЙРОНОВ
ИЗДАТЕЛЬСТВО «НАУКА» МОСКВА 1974
АКАДЕМИЯ НАУК СССР ИНСТИТУТ БИОЛОГИИ РАЗВИТИЯ
© Издательство «Наука», 1974 г.
Генеалогия нейронов - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Но возможно, что и ацетилхолин — член того же семейства медиаторов. Синаптические везикулы в холинергических и глутаматергических окончаниях очень сходны; известно, далее, что синтез ацетилхолина идёт (по крайней мере отчасти) через глутаминовую кислоту [225]. В этой связи интересны данные венгерских исследователей, которые нашли, что в митохондриях пресинаптических окончаний цикл Кребса видоизменён и направлен на продукцию глутамата [177]. Если бы оказалось, что такие митохондрии характерны для окончаний, секретирующих глутамат, ацетилхолин и гамма-аминомасляную кислоту, но не характерны, допустим, для катехоламиновых аксонных окончаний, это было бы сильным доводом в пользу сделанного сейчас предположения о родственных отношениях холинергических нейронов.
В идеале изучение истории нейронов должно прояснить как генеалогические отношения внутри каждого семейства, так и источники происхождения разных семейств нервных клеток. Такие знания в совокупности позволили бы построить естественную систему нейронов.
Вопросы, связанные с построением естественной системы животных тканей, исчерпывающе обсуждаются в книге Н. Г. Хлопина, много сделавшего для развития этой проблемы [66]. Хотя сам Хлопин считал, что нервная ткань, в отличие от других животных тканей, однородна, развитые и аргументированные им теоретические положения приложимы к нервной ткани и должны найти применение при построении естественной системы нейронов. Такая система, несомненно, будет отличаться от любой из существующих классификаций нейронов.
Существующие классификации не учитывают естественных, реально действовавших в природе причин различий между нейронами, а берут за основу тот или иной произвольно взятый признак. Так, нередко нейроны классифицируют в зависимости от того, к какому животному они относятся («нейроны человека», «нейроны рыб», «нейроны моллюсков»). В других случаях клетки делят по их месту в рефлекторной дуге, по их размерам, по числу и длине отростков и т. д. Общий недостаток искусственных систем в том, что они почти ничего не сообщают о нейроне, кроме названного признака. Зная про клетку, что это «нейрон моллюска», мы практически ничего больше не можем про неё сказать. Деление нейронов в зависимости от их медиаторов ближе всего к естественной системе, но в существующем сейчас виде и такое деление во многом искусственно. Так, серотонин произвольно объединяют с катехоламинами в группу «биогенных аминов»; в группу нейронов с аминокислотными медиаторами попадают, по-видимому, совершенно неродственные клетки; вместе с тем родственные нейроны могут оказываться в разных группах.
Преимущество естественной системы в том, что она даёт исследователю априорное знание свойств клеток. Я уже приводил пример из недавней практики, когда нейрон с нужными свойствами был найден у аплизии благодаря тому, что авторы опирались на понимание клеточных гомологий ( 5.3.1). Естественная система широко открыла бы возможности такого рода.
7. 3. Совершенствование механизмов передачи
Эволюция самих медиаторных веществ, рассмотренная в предыдущем разделе, представляет лишь одну сторону эволюции химических синапсов. Другая сторона — прогрессивные изменения химизма, не сопровождающиеся изменениями в строении медиатора.
Здесь уже не раз говорилось, что синапсы, работающие при посредстве одного и того же медиатора, могут проявлять совершенно разные функциональные свойства ( 6.3). Теперь нужно специально обратить внимание на то, что некоторые из этих свойств являются достижениями эволюции.
Так, например, долгие годы и даже десятилетия считалось, что присутствие ацетилхолинэстеразы в области синаптического контакта — это непременное свойство холинергических синапсов. Однако оказалось, что это свойство присуще далеко не всем холинергическим синапсам и достигается ими в процессе эволюции, причём в разных линиях эволюции многоклеточных функциональная задача инактивации синаптического ацетилхолина решается по-разному.
Если обратиться, например, к ганглиям гастропод, в которых имеются настоящие холинергические интернейроны и, следовательно, холинергические синапсы, то оказывается, что здесь зачастую ещё не решена задача обеспечения холинергических контактов локальным ферментом, гидролизующим ацетилхолин. При попытке локализовать такую активность на срезах центральных ганглиев у трёх видов лёгочных улиток мы получили следующие результаты. У наземной улитки Caucasotachea фермент выявлялся в нервных стволах, отходящих от ганглиев, и в трактах, продолжающих эти стволы, т. е. не в синаптической области. У другой наземной улитки, Helix lucorum, фермент не выявлялся нигде и лишь при очень длительной инкубации небольшая активность отмечалась в нейропиле (её, вероятно, наблюдали у близкого вида Керкут и соавторы при попытке выявить фермент на уровне электронного микроскопа [249]). Наконец, у прудовика Lymnaea активность обнаруживалась вокруг тел нейронов, в сателлитной глие, т. е. и на этот раз вне синаптической области [285]. В полном совпадении с этими наблюдениями находятся электрофизиологические данные о том, что ингибиторы холинэстеразы не вызывают у гастропод удлинения холинергических постсинаптических потенциалов [309]. Те и другие данные дают основание считать, что синаптическое действие медиаторного ацетилхолина прекращается в указанных синапсах гастропод не вследствие гидролиза ацетилхолина холинэстеразой, а по другой причине. Здесь мыслимы два примитивных механизма.
Во-первых, диффузия ацетилхолина во внеклеточное пространство. Известно, что у гастропод оболочка ганглиев не является барьером для макромолекул гемолимфы, омывающей ганглий. В гемолимфе же имеется значительная холинэстеразная активность [64]. Следовательно, медиатор, диффундирующий от области контакта, может быть инактивирован во внеклеточном пространстве. Достаточен ли этот механизм для эффективной синаптической передачи? Имеются расчёты, которые показывают, что в синаптическом контакте диаметром 2 мк и шириной щели 200 Å (а это близко к реальным размерам) благодаря диффузии количество ацетилхолина в щели должно уменьшаться вдвое каждые 0,15 мсек [см. ссылки в 317]. Такая скорость уменьшения концентрации ацетилхолина у рецепторов может обеспечить весьма быстрые постсинаптические потенциалы.
Имеется и другой механизм, впервые обнаруженный на сердце двустворчатого моллюска [57] и затем подробно исследованный на этом объекте С. Н. Нистратовой [40, 41]. В этом случае синаптическое действие ацетилхолина прекращается благодаря тому, что вслед за ацетилхолином в синаптической области появляется вещество, снижающее сродство мышечных холинорецепторов к ацетилхолину, благодаря чему постсинаптическая структура теряет чувствительность к медиатору. Результаты, полученные на сердце моллюска и других нейро-эффекторных системах, послужили Т. М. Турпаеву основанием для развития представления о саморегуляции медиаторного процесса механизмом обратной связи [63].
Читать дальшеИнтервал:
Закладка: