Карл Циммер - Она смеется, как мать [Могущество и причуды наследственности] [litres]
- Название:Она смеется, как мать [Могущество и причуды наследственности] [litres]
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2020
- Город:Москва
- ISBN:978-5-0013-9210-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Карл Циммер - Она смеется, как мать [Могущество и причуды наследственности] [litres] краткое содержание
И культура, и традиции, география и экономика, технологии и то, в каком состоянии мы оставим планету, наконец. По мере развития науки появляется все больше способов вмешиваться в разные формы наследственности, что открывает потрясающие возможности, но одновременно ставит новые проблемы.
Технология CRISPR-Cas9, используемая для редактирования генома, генный драйв и создание яйцеклетки и сперматозоида из клеток кожи – список открытий растет с каждым днем, давая достаточно поводов для оптимизма… или беспокойства. В любом случае прежним мир уже не будет.
Карл Циммер знаменит своим умением рассказывать понятно. В этой важнейшей книге, которая основана на самых последних исследованиях и научных прорывах, автор снова доказал свое звание одного из лучших научных журналистов в мире.
Она смеется, как мать [Могущество и причуды наследственности] [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Многие животные, в том числе люди, не могут размножаться почкованием. Отрежете себе руку – из нее не вырастет ваша копия. Мы развиваемся из единственной оплодотворенной яйцеклетки, которая называется зиготой. Как и остальные клетки, зигота не возникает из ниоткуда. Она образуется при слиянии двух других клеток. Неразрывная связь зиготы с предыдущим поколением позволила некоторым ученым считать, что дети – это, собственно говоря, разрастание обоих своих родителей [758] См.: Amundson 2007; Churchill 2015.
.
Слово «разрастание» ассоциируется с беспорядочным, «нескладным», буйным ростом живой материи. Однако эмбрионы животных развиваются отнюдь не так хаотично. У большинства млекопитающих они из невзрачных шариков превращаются сперва в оболочки с прилипшим к их внутренним стенкам множеством клеток. Клетки, образующие оболочку, становятся плацентой, а внутренняя масса – собственно эмбрионом. Эта масса преобразуется в структуру, состоящую из трех слоев: эктодерма, энтодерма и мезодерма. С них начинались и вы, и кузнечик, и ленточный червь. Из этих слоев формируются различные ткани организма.
Когда биологи проявили интерес к более поздним стадиям развития эмбриона, они начали с изучения только что образовавшихся тканей. Каждый их тип состоял из определенного набора клеток. И неважно, насколько разными клетки выглядели снаружи, внутри они оказались сходными. Что у ветвящегося нейрона, что у плоской эпителиальной клетки в центре было ядро, внутри которого имелся один и тот же набор хромосом.
Августу Вейсману – тому, кто отрезал мышам хвосты, чтобы опровергнуть наследуемость приобретенных признаков, – нелегко было понять, откуда появляется это разнообразие. Он спрашивал: «Как единственная клетка может воспроизвести tout ensemble [759] Здесь: «целиком» (фр.). – Прим. пер.
родителя с портретной точностью?» [760] Цит. по: Churchill 2015, p. 303.
Наблюдая за эмбрионами животных в течение многих лет, Вейсман нашел ответ. Когда оплодотворенная яйцеклетка делилась, она передавала клеткам-потомкам ядра. А внутри ядер имелось то таинственное вещество, которое, по мнению Вейсмана, и было носителем «наследственных свойств» [761] Dröscher 2014.
. Эти клетки, в свою очередь, передавали уже своим потомкам те же самые свойства. Вейсман пришел к выводу, что клетки смогут приобрести несхожие черты исключительно в том случае, если унаследуют разные наследственные свойства.
Другими словами, когда клетка делилась, она определяла, какая из дочерних клеток какие свойства унаследует. На ранних этапах развития материнская клетка могла передать одной из дочерних клеток «стремление» стать эктодермой, а другой – мезодермой. Каждая клетка передаст эти свойства дальше. В какой-то момент эктодермальная клетка еще раз неравномерно разделит свои наследственные свойства. Одна дочерняя клетка получит те, что сделают ее клеткой кожи, а другая – те, которые превратят ее в нервную.
Иначе говоря, для Вейсмана развитие было чередой потерь. К тому моменту как образовывались органы вроде желудка или щитовидной железы, их клетки уже теряли бóльшую часть исходных наследственных свойств, которые были у оплодотворенной яйцеклетки. Делясь дальше, они могли образовывать только клетки желудка или щитовидной железы. Они никогда бы не смогли воспроизвести новое животное tout ensemble .
Исходя из такого своего представления о развитии, Вейсман заострил внимание на том, как эмбрионы производят собственные запасы яйцеклеток или сперматозоидов. Он сам наблюдал этот процесс и поражался тому, сколь рано формируются половые клетки, оставаясь сами незатронутыми, пока растет вся остальная часть эмбриона. Вейсман пришел к убеждению, что такая ранняя их изоляция жизненно необходима. Яйцеклетки и сперматозоиды должны быть отложены в сторону до того, как потеряют слишком много наследственных свойств. И в этом, по мнению Вейсмана, состояло глубочайшее различие между зародышевыми клетками (так он называл сперматозоиды и яйцеклетки) и клетками всего остального тела (соматическими).
Вейсман разделил наследственность на две формы. Одна из них связывала родителей и детей. Согласно Вейсману, как уже говорилось выше, родители были хранителями зародышевой плазмы, таинственного наследственного вещества, которое могло создать целый человеческий организм. Способность порождать новую жизнь не терялась, передаваясь от поколения к поколению.
Концепция зародышевой плазмы помогла генетикам объяснить, почему в экспериментах Менделя наследственные факторы могли перепрыгивать через поколение, как плоский камушек подскакивает по поверхности пруда. Развитие как таковое генетиков не особо интересовало. Это был тупиковый путь смертной плоти.
Однако Вейсман выделял и другой тип наследственности – работающий внутри каждого из нас [762] Churchill 1987; Griesemer 2005.
. В своей книге «Зародышевая плазма: теория наследственности» он изображает развитие круглого червя в виде дерева – подобно эмбриональной родословной. В основании дерева нарисован круг, олицетворяющий одну оплодотворенную яйцеклетку. От круга отходят две линии, обозначающие деление зиготы на две дочерние клетки. Одна из них приводит к белому кружку, который, в свою очередь, делится на следующие белые кружки. Они представляют эктодермальные клетки. Другая ветвь дает начало энтодермальной, мезодермальной и зародышевой линиям клеток. Если не знать, что перед вами круглый червь, можно подумать, что вы смотрите на семейное древо династии Габсбургов.
Это дерево, предостерегает Вейсман, просто «теоретическая иллюстрация» [763] Weismann 1893, p. 103.
. Он нарисовал его, только чтобы показать важность разделения зародышевых и соматических клеток. Однако этот рисунок вдохновил других биологов наблюдать за развитием эмбрионов и рисовать собственные деревья [764] Maienschein 1978.
.
Одним из первых биологов, начавших рисовать клеточные родословные, стал молодой американский аспирант Эдвин Конклин [765] Clement 1979.
. К собственному творчеству он приступил летом 1890 г., когда отправился в приморскую деревню Вудс-Хол в Массачусетсе, чтобы подобрать себе тему для диссертации. В итоге он занялся соскребанием с панцирей крабов моллюсков морских блюдечек и сбором их яиц. Яйцеклетки этих моллюсков – крупные и прозрачные, поэтому Конклину было легко наблюдать за ними в микроскоп. Он зарисовал такую клетку, показав на рисунке ядро и другие внутренние структуры. На следующем рисунке он изобразил, как клетка разделилась на две. Он фиксировал своим карандашом каждое последующее деление эмбриона, определяя, какие клетки из каких образовались. На его зарисовках видно, как крошечные клетки превращаются сначала в большие сферы, а затем и в более сложные формы.
Интервал:
Закладка: