Сэмюел Стернберг - Трещина в мироздании [litres]
- Название:Трещина в мироздании [litres]
- Автор:
- Жанр:
- Издательство:Литагент Corpus
- Год:2019
- Город:Москва
- ISBN:978-5-17-109309-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сэмюел Стернберг - Трещина в мироздании [litres] краткое содержание
Трещина в мироздании [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В 1994 году исследователи из лаборатории Марии Джесин в Мемориальном онкологическом центре имени Слоуна – Кеттеринга (Нью-Йорк) стали первыми, кому удалось “обмануть” таким образом клетки млекопитающих, – об этом прорыве я читала с большим интересом, находясь неподалеку, в Нью-Хейвене, куда я только что приехала после завершения работы постдоком в Боулдере. Мне было чрезвычайно интересно узнать об этой важной работе, которая была основана на предложенной моим научным руководителем модели двуцепочечных разрывов и выполнена исследовательницей, которая, как и я, была увлечена молекулами жизни.
Эксперименты по редактированию генома, проведенные Джесин, были оригинальными и новаторскими. Ее стратегия заключалась в введении в мышиные клетки ферментов, разрезающих геном и создающих двуцепочечные разрывы; одновременно с этим она добавляла в клетки фрагменты синтезированной ДНК (шаблоны для репарации), соответствующие разрезанной последовательности ДНК. Затем исследовательница проверяла, получилось ли у мышиных клеток восстановить поврежденную ДНК с помощью вставки шаблона для репарации. Проводя этот же самый эксперимент с добавлением фермента и без него, Джесин смогла проверить свою гипотезу, что искусственно созданный двуцепочечный разрыв повышал эффективность гомологичной рекомбинации.
Сложность заключалась в том, чтобы подобрать подходящий фермент, разрезающий геном только в одном определенном месте из миллиардов возможных вариантов. Чтобы решить эту проблему, Джесин остроумно позаимствовала часть молекулярного механизма из дрожжей: эндонуклеазу I- Sce I [34] Sce в названии фермента указывает на организм, из которого данный белок был впервые получен. Это сокращение от Saccharomyces cerevisiae , латинского названия дрожжей.
.
Нуклеазы – это ферменты, разрезающие нуклеиновые кислоты; одни режут РНК, другие – ДНК. Эндонуклеаза делает “надрез” где-то внутри цепочек, в отличие от экзонуклеаз, которые работают исключительно с концами цепочек. Некоторые эндонуклеазы чрезвычайно губительны для клеток, поскольку они “режут” практически любой фрагмент ДНК, который встречается им на пути, вне зависимости от последовательности нуклеотидов в нем. Другие эндонуклеазы действуют очень специфично и разрезают только строго определенные последовательности; а большинство ведет себя как нечто среднее между первыми и вторыми.
Эндонуклеаза I- Sce I, которую выбрала Джесин, была одной из наиболее специфических эндонуклеаз, известных к тому времени: фрагмент ДНК должен был содержать определенную последовательность из восемнадцати нуклеотидов, чтобы фермент сделал в нем разрез. Использование высокоспецифичной эндонуклеазы было критически важно: если бы Джесин выбрала слишком “неразборчивый” фермент, он бы “порезал” геном как попало, и это не только сделало бы результаты более сложными для интерпретации, но и, вероятно, повредило бы клетку. Однако, обладая специфичностью к восемнадцатибуквенной последовательности ДНК, I- Sce I разрезает только один фрагмент ДНК из более чем пятидесяти миллиардов возможных комбинаций. (По иронии судьбы, в мышином геноме нет подходящей последовательности из восемнадцати “букв”, поэтому, прежде чем приступить к своему эксперименту, Джесин пришлось добавить копию этой последовательности в ДНК мышей – чтобы ферменту было что резать.)
Результаты эксперимента Джесин [35] P. Rouet, F. Smih, and M. Jasin, “Introduction of Double-Strand Breaks into the Genome of Mouse Cells by Expression of a Rare-Cutting Endonuclease”, Molecular and Cellular Biology 14 (1994): 8096–8106.
были потрясающими. Она добилась того, что точная репарация мутировавшего гена посредством гомологичной рекомбинации прошла в целых 10 % клеток; сейчас эта эффективность может показаться не слишком высокой, однако это было в сотни раз лучше, чем у лучших из достигнутых к тому времени результатов. На тот момент это было наиболее многообещающее свидетельство того, что гомологичная рекомбинация может рано или поздно позволить ученым переписывать генетический код без риска незаконной рекомбинации или риска случайного встраивания в геном различных последовательностей при использовании ретровирусных векторов. Стоит лишь инициировать двуцепочечный разрыв в нужном месте – и фактически все остальное клетки сделают сами.
Имелась только одна проблема: чтобы этот подход можно было практически использовать, нужно было научиться разрезать геном в строго заданных местах. В эксперименте Джесин для проверки правильности идеи последовательность, которую распознавала эндонуклеаза I- Sce I, была искусственно добавлена в геном перед введением нуклеазы, однако последовательности многих болезнетворных генов, скажем так, незыблемы: их невозможно изменить таким образом, чтобы они “пришлись по вкусу” тому или иному придирчивому ферменту. После разрыва геном легко восстанавливался и включал в себя новую генетическую информацию – хитрость была в том, чтобы понять, как сделать разрыв в нужном месте.
Начиная с середины 1990-х, пока я разбиралась со структурами молекул РНК с их уникальным биохимическим поведением, другие ученые спешили разработать новые системы, которые, подобно I- Sce I, могли бы направленно действовать на конкретные последовательности ДНК. Тот, кому удалось бы решить эту проблему, смог бы раскрыть весь потенциал редактирования генома.
К этим технологиям нового поколения предъявлялось три критически важных требования: они должны были распознавать определенную выбранную последовательность ДНК; уметь разрезать эту последовательность и легко подвергаться перепрограммированию, для того чтобы атаковать различные последовательности ДНК и инициировать их разрыв. Первые два условия были необходимы для создания двуцепочечных разрывов, а третье – для того, чтобы этот инструмент был максимально универсален. I- Sce I превосходно отвечала двум первым критериям, однако совершенно не соответствовала третьему. Биоинженеры поняли: чтобы создать программируемую систему разрезания ДНК, нужно либо перестроить I- Sce I таким образом, чтобы она могла атаковать разные последовательности, либо найти совершенно новую нуклеазу, которая уже “научилась” разрезать самые различные последовательности ДНК.
Попытки ученых видоизменить I- Sce I не достигли цели (что и неудивительно, учитывая крайне сложное молекулярное устройство белков-ферментов), и вскоре стало ясно, что поиск других природных нуклеаз – гораздо более перспективный подход. Фактически, к тому моменту, когда Джесин вела свои эксперименты с I- Sce I, ученые уже выделили десятки нуклеаз из целого ряда организмов и установили конкретные последовательности ДНК, служившие мишенями для этих ферментов. Однако существовала фундаментальная проблема: подавляющее большинство ферментов распознавали последовательности длиной лишь в 6 или 8 “букв” – то есть слишком короткие для того, чтобы с таким ферментом можно было работать. В геноме человека подобные последовательности встречаются десятки или даже сотни тысяч раз, и это означает, что, даже если нуклеаза способна стимулировать гомологичную рекомбинацию в одном гене, она в процессе может “порубить” почти весь геном. Клетка была бы разрушена еще до того, как у нее появится какой-либо шанс начать репарацию ДНК.
Читать дальшеИнтервал:
Закладка: