Евгений Романцев - Закономерные чудеса
- Название:Закономерные чудеса
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1976
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Евгений Романцев - Закономерные чудеса краткое содержание
Закономерные чудеса - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Доброжелательное знакомство с историей развития исследований нуклеиновых кислот свидетельствует, что это было постепенное познание механизмов ее действия; поэтапное изучение ее структуры и функции. В течение долгих лет и десятилетий исследование шло по линии накопления больших и маленьких фактов. Практический выход таких работ был нулевым. Более того, его невозможно было предвидеть.
Знакомство с нуклеиновыми кислотами лучше всего начинать с изучения их строения. Можно сказать и так: с биохимической азбуки.
Но все по порядку.
В русском алфавите 32 буквы. Много это или мало? Что за вопрос, скажет благоразумный читатель. Это количество вполне удовлетворяло таких гениев русского языка, как А. Пушкин, Л. Толстой... Аксиома не требует доказательств.
А можно ли объясняться с исчерпывающей полнотой, если знаков будет значительно меньше? Например, два.
Конечно, можно. Азбука Морзе. Точки и тире достаточно, чтобы поговорить по широкому кругу вопросов.
Ну а каков алфавит в молекулярной биологии и генетике?
Нуклеиновые кислоты — это содержащие азот органические соединения с большим молекулярным весом. Если расщепить молекулу нуклеиновой кислоты на составные части, то получится не так уж много значительно более простых соединений, молекулярный вес которых будет, естественно, значительно меньше. Каждое из них имеет достаточно короткое и простое имя, чтобы его можно было запомнить. Вот эти соединения. "Великолепная пятерка" азотистых оснований: аденин, гуанин, цитозин, тимин и урацил. Потом сахар. Но не тот, что стоит в сахарнице на обеденном столе. И все же сахар, имеющий собственное имя, — рибоза. Наконец, остаток фосфорной кислоты.
Все перечисленные соединения — простейшие кирпичики, из которых строится грандиозное по размеру и удивительное по конструкции здание высокомолекулярной нуклеиновой кислоты.
Существуют так называемые дезоксирибонуклеиновая и рибонуклеиновая кислоты. Даже специалистам биохимикам эти названия кажутся длинноватыми и не очень удобными для повседневного употребления. Поэтому первую обычно называют сокращенно — ДНК, а вторую — РНК. Между ними существует различие. Тимин встречается главным образом в ДНК, а другое азотистое основание — урацил находится только в РНК. Зато три других основания — аденин, гуанин и цитозин входят с одинаковым успехом в молекулу ДНК и РНК. Наконец, обе молекулы различаются и своими углеводными остатками. В РНК находят углевод рибозу, а в ДНК — дезоксирибозу.
Если азотистое основание соединено с углеводом, то такое соединение называют нуклеозидом. Стоит к такому нуклеозиду присоединиться остатку фосфорной кислоты, как образовавшееся вещество начинает называться нуклеотидом.
Научная терминология — вещь удобная, но если можно объясняться более простым языком, то к этому всегда нужно стремиться. Биохимики поняли это давно, и поэтому все пять азотистых оснований в чисто научных книгах и в журнальных статьях изображают заглавными буквами русского алфавита. Аденин — это А, Г — гуанин, Ц — цитозин, Т — тимин, У — урацил. Структура и биологические свойства нуклеиновых кислот определяются их химическим составом, количественным соотношением азотистых оснований и последовательностью соединения соответствующих нуклеотидов.
Прошло не два и не три десятилетия после дня рождения нуклеина и именин нуклеиновых кислот. И наконец стало ясно, что нуклеиновые кислоты, выделенные из клеток жизотных, птиц, рыб, растений, различных представителей живых организмов, разнятся по своему нуклеотидному составу.
Много крупных ученых в разных лабораториях исследовали нуклеотидный состав живых организмов. Работа эта была поистине титанической. Известные советские ученые — академик А. Белозерский, академик А. Спирин и другие внесли в эту работу значительный вклад.
Опубликованные в 1962 году данные А. Спирина о нуклеотидном составе ДНК и РНК у разных организмов и сегодня производят внушительное впечатление. Был изучен нуклеотидный состав у человека, быка, мыши, курицы, осетра, морского ежа, осьминога, тутового шелкопряда, у таких высших растений, как пшеница, лук, фасоль, папоротник, сосна. Определили нуклеотидный состав у грибов, например известных всем грибникам на нашей планете — шампиньонов. Нуклеотидный состав исследовали у десятков видов бактерий и вирусов.
Очень важна последовательность, в которой располагаются нуклеотиды в огромной по длине молекуле нуклеиновой кислоты. Чтобы определить последовательность нуклеотидов в ДНК или РНК, надо научиться осторожно "скалывать" их с конца молекулы нуклеиновой кислоты. Задача эта в высшей степени непростая. Молекулярный вес нуклеиновой кислоты может исчисляться сотнями тысяч и выше. И построены нуклеиновые кислоты главным образом из четырех нуклеотидов разных типов. Из этого следует, что именно последовательность нуклеотидов определяет все основные свойства молекул ДНК и РНК.
Осторожное "скалывание" нуклеотидов — самая настоящая ювелирная работа. Существуют приемы, с помощью которых проводят эту операцию. Например, можно подвергнуть ДНК мягкому гидролизу, или, проще говоря, воздействовать на нее слабой кислотой.
Для работы с РНК используют другие приемы. Можно подобрать такие ферменты, такие ускорители биохимических реакций, которые способны действовать только на совершенно определенные химические связи между нуклеотидами. Иными словами, одним "ферментативным ключом" открыть ряд одинаковых "химических замков".
Итак, дело сделано, молекулы ДНК или РНК разрезаны на сравнительно мелкие кусочки. Конечно, они имеют и собственные названия. Биохимик или химик в этом случае скажет: "Мы получили смесь мононуклеотидов и олигонуклеотидов". Теперь смесь нужно разделить на составные части. Для этого можно воспользоваться хорошо разработанными методами.
Один из них — хромография на бумаге. Если анализируемую смесь нанести на "старт", а затем бумагу медленно промыть смесью различных растворителей с некоторыми добавками (примером такой смеси может служить раствор изопропилового спирта, соляной кислоты и воды), молекулы разных соединений застрянут в различных участках бумаги. После хроматографирования "застрявшие" в разных местах бумаги химические соединения удаляют, например, с помощью воды или других растворителей. Собрав отдельные мононуклеотиды или олигонуклеотиды, исследователь может определить их химические и физико-химические свойства и выяснить, с каким конкретным соединением имеет дело. И конечно, не надо забывать самого главного. Очередность высвобождения нуклеотидов из молекулы ДНК или РНК указывает, в какой последовательности они там были соединены.
Читать дальшеИнтервал:
Закладка: