Евгений Романцев - Закономерные чудеса
- Название:Закономерные чудеса
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1976
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Евгений Романцев - Закономерные чудеса краткое содержание
Закономерные чудеса - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Ученые знали, что при облучении гамма-лучами водных растворов органических веществ нередко образуются перекиси, например, обыкновенная перекись водорода. В то же время было известно, что цианистый калий препятствует образованию перекисей. Возникла мысль вводить животным перед облучением цианистые соединения. Тогда количество перекисей, возникающих в теле животного при облучении, уменьшится. А если они имеют отношение к развитию лучевой болезни, то цианистые соединения будут защищать животных от лучевого поражения.
Исходя из этих предпосылок, в конце сороковых годов нашего века 3. Бак совместно с другим исследователем, А. Герве, провел исследования на мышах. Эксперимент дал удивительные результаты. В контрольной группе погибли все животные. Им перед облучением вводили только физиологический раствор. В группе подопытных мышей, которым перед облучением вводили небольшие количества цианистого калия, выживало 50-80 процентов животных.
Вскоре была опубликована работа американских ученых Г. Патта и В. Чапмана. Они проводили свои исследования независимо от бельгийцев, но фактически обе группы исследователей искали лекарства, способные защищать организм человека от поражающего действия радиации,
Предварительные опыты показывали: некоторые ферменты очень чувствительны к действию ионизирующей радиации. Их активность зависит от сульфгидрильных групп, в которых сера соединена, с одной стороны, с водородом, а с другой — с молекулой фермента. После облучения водных растворов таких ферментов их биологическая активность резко снижалась.
Г. Патт и В. Чапман взяли лабораторных крыс и разделили их на две группы. Опытной перед облучением ввели определенное количество аминокислоты цистеина, которая содержит сульфгидрильные группы. Животным контрольной группы — только физиологический раствор. Через несколько дней после облучения признаки лучевой болезни стали очевидными. Вялость, взъерошенная шерсть, потеря аппетита, резко снизилось количес!во лейкоцитов в крови. Но животные в подопытной груйпе выглядели значительно лучше. Через месяц в контрольной группе погибли все йшвотные, а в подопытной выжило 60 процентов крыс.
Эти эксперименты произвели сенсацию среди специалистов. Еще бы! Они были наглядны, просты, легковоспроизводимы. И главное — таили перспективу еще более поразительных результатов.
И они не заставили себя долго ждать. Новая работа З. Бака оказалась еще более впечатляющей. Исследователь со своими коллегами поставили следующие опьйы. От аминокислоты цистеина отняли карбоксильную группу. Получили новое соединение, принадлежащее к классу так называемых аминотиолов. Более точно оно называлось бета-меркаптоэтиламин. Название длинноватое и не совсем благозвучное. Поэтому фармакологи окрестили его иначе — меркамин.
З. Бак взял две большие группы мышей. Контрольным животным, как обычно, вводили только физиологический раствор, подопытным — раствор меркамина. После этого всех животных облучали рентгеновскими лучами в дозе, вызывающей почти полную гибель мышей. И вот опыт окончен. Он длился почти полтора месяца. В контрольной группе погибли почти все животные, а в подопытной более 90 процентов мышей выжили. Это был впечатляющий результат.
В это же время интенсивные поиски новых радиопротекторов проводились и учеными Советского Союза. Химики создавали сотни новых органических веществ, биохимики изучали их действие, фармакологи — их фармакологические свойства. И. Иванов, А. Мозжухин, Ф. Рачинский, академик П. Горизонтов и его ученики, П. Саксонов и его коллеги... Десятки ученых разных специальностей.
Мне самому приходилось участвовать в поисках новых радиопротекторов-аминотиолов. В результате нескольких лет интенсивной работы М. Щукиной был синтезирован и прошел биологические испытания в нашей лаборатории новый мощный и эффективный радиопротектор — бета-меркаптопропиламин. Мы дали ему имя пропамин.
Наша биохимическая лаборатория изучала, почему радиопротекторы-аминотиолы обладают радиозащитным действием на самых разнообразных экспериментальных животных. Это сложный и довольно-таки запутанный вопрос. Мы предполагали, что различные звенья биохимических процессов в организме млекопитающих обладают разной радиочувствительностью. Есть участки, более устойчивые к действию ионизирующей радиации и более чувствительные. Опыты подтвердили наши предположения. Анализ работ других исследователей свидетельствовал о том же.
Мы сконцентрировали свои усилия на изучении двух очень важных биохимических процессов. На биосинтезе и метаболизме нуклеиновых кислот, с которыми связана передача наследственных признаков, и на реакциях, связанных с наработкой энергии. Оба процесса действительно оказались весьма радиочувствительными: уже небольшие дозы проникающих лучей вызывали их изменение и нарушали согласованность действия. Более того, изменения наступали сразу же после лучевого поражения — в ближайшие минуты и часы.
Если животным вводили радиозащитные средства до начала облучения, то наблюдались необычные явления. Сами радиопротекторы подавляли и биосинтез нуклеиновых кислот и процессы наработки энергии. Было над чем задуматься. Создавалось впечатление, что и лекарство и радиация проделывают одно и то же: угнетают важные биохимические процессы. Однако вскоре было установлено и принципиально важное отличие. Радиопротекторы вызывали кратковременное и обратимое угнетение биохимических процессов, а ионизирующая радиация — нарушения необратимые.
Да, но в таком случае возникает законный вопрос: к чему приводит это временное угнетение жизненно важных реакций синтеза генетического материала и наработки энергии?
Нелегко давалось нам его решение. Оказалось, радиация вызывала повреждение молекул дезоксирибонуклеиновой кислоты. ДНК — это своего рода матрица-штамп для наработки готовых деталей, молекул белка. Если повреждался "штамп", начиналось производство "бракованных деталей". Радиопротекторы временно замедляли изготовление "штампа" — самой молекулы ДНК. В результате при облучении повреждалось меньшее количество "штампа" и как следствие нарабатывалось меньше "бракованных деталей". Более того, за это же время "починочные ферменты" успевали во многом восстановить поврежденную молекулу ДНК.
Ответив на один из трудных вопросов, мы стали пытаться решить и другой: а как ухитряется молекула противолучевого лекарства тормозить работу ферментов, которые отвечают и за биосинтез ДНК, и за наработку энергии? Снова потребовалось несколько лет напряженных научных поисков.
Читать дальшеИнтервал:
Закладка: