Владислав Солоухин - Размышления и споры о вирусах
- Название:Размышления и споры о вирусах
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1989
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владислав Солоухин - Размышления и споры о вирусах краткое содержание
Размышления и споры о вирусах - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Залогом успешной работы силовой станции города-гетеротрофа является строгая структурная организация, нисколько не меньшая, чем в фабрике созидания города-аутотрофа — хлоропласте. Не только связывать энергию Солнца, но и высвобождать ее можно с помощью высокой организации на базе совершенной техники! Сейчас уже хорошо известны внутренняя структура и механизм действия митохондрий, но это особый и очень специальный разговор.
Итак, мы кратко коснулись вопроса о том, как осуществляется энергетическое обеспечение жизнедеятельности клетки. Даже то, что уже известно, говорит о гармонии, но мы убеждены: будущее приведет к новым открытиям, свидетельствующим о поразительном порядке, целесообразности и совершенстве, которое царит в наших удивительных городах-государствах, пока они здоровы (!). Мы познакомились с энергетическим обеспечением жизни клетки. Но дальше станет очевидным, что и во всей иной деятельности царит такая же стройность и совершенство. И это неудивительно. Каждая клетка миллионы лет училась на своих ошибках в эволюции. Отбирались только самые ценные свойства. Все остальное нещадно уничтожалось.
Энергия необходима клетке прежде всего для синтеза молекул, то есть для строительства. Как же это происходит? Чтобы разобраться в этом вопросе, нам необходимо вновь посетить клеточное ядро и поближе познакомиться с правительством нашего города-государства.
Уже при первом знакомстве мы заметили, что "члены правительства" — молекулы ДНК постоянно меняют свой вид и форму существования в ядре. Период, когда они перестали плавать и начали строиться, приобретя форму четко обрисованных вытянутых палочек — хромосом, предшествовал началу клеточного деления — процессу, в итоге которого рождаются две новых клетки вместо одной старой. Как происходит это удивительное деление, мы рассмотрим чуть позже, а сейчас обратим внимание на деятельность молекул ДНК между двумя делениями.
В этот период ДНК хромосом развертывается в длинные нити, образующие в ядре нечто вроде кружева. Молекулы ДНК буквально купаются в ядерном соке, активно контактируя с ним и с его содержимым. Именно в это время мы и увидели их в первый раз.
Глядя на "купающихся" "членов правительства" нашего города-государства, мы и не подозревали, что как раз в это время они и руководят всем строительством белков в клетке, активно передавая свои приказы о том, что, как и где нужно возводить. Именно теперь они активно передавали свою информацию клетке, в то время как в хромосомах закрученные в тугую спираль нити ДНК лишь сохраняли эту информацию для будущих городов-государств.
Что же представляют собой эти странные "члены правительства", какую информацию они имеют и как передают ее клетке-государству?
После работы Д. Уотсона и Ф. Крика, выполненной еще в начале пятидесятых годов, не вызывает никаких сомнений, что молекула ДНК — это двойная спираль, состоящая из двух обвивающих друг друга цепей. Каждая цепь состоит из фрагментов — нуклеотидов, а поскольку их много, то вся цепь является полинуклеотидом (поли — много).
Таким образом, оказывается, что каждая молекула ДНК — это не просто "член правительства (министр)", а целый департамент — "министерство", где есть свои многочисленные "отделы" и "ведомства" (нуклеотиды). Как мы увидим дальше, состав этих отделов и определяет работу всего министерства в целом.
Каждый отдел министерства — нуклеотид состоит из трех химических соединений: сахара, фосфата и какого-либо основания (аденина, гуанина, тимина или цитозина). Каждое из этих веществ выполняет свою особую функцию: остов всей молекулы образуют чередующиеся между собой сахара (дезоксирибозы) и фосфаты, а азотистые основания присоединены к остатку сахара. Так устроена каждая цепь в отдельности, а удерживаются они друг против друга за счет водородных связей азотистых оснований, причем аденин одной цепи всегда соединяется с тимином в другой цепи, а гуанин — с цитозином. Это явление носит название комплементарности оснований.
Вот какое сложное сооружение — молекула дезоксирибонуклеиновой кислоты! Но почему каждая такая конструкция несет свою особую информацию? Чем конкретно отличается информация одной хромосомы от информации другой и что такое, наконец, сама эта информация? О чем она?
Все эти вопросы волновали биологов многих поколений. Ведь ДНК известна с 1869 года, когда Ф. Мишер впервые выделил из клеточных ядер вещество со свойствами кислоты и назвал его нуклеином. Уже в то время знали, что нуклеин содержит азот (вспомните наши азотистые основания) и фосфор (фосфатные остатки), но никому из современников Мишера и в голову не приходило связывать это вещество с наследственностью, поскольку в то время даже о роли ядра в передаче наследственных свойств не было речи.
Какой гигантский путь прошла наука о клетке с момента открытия нуклеиновой кислоты в ядрах клеток в 1869 году и до сегодняшнего дня, когда пишутся эти строки и когда каждый школьник из учебника знает, что наследственная информация закодирована в структуре ДНК с помощью определенной последовательности азотистых оснований: три рядом расположенных основания определяют одну аминокислоту!
Итак, тайна могущества наших "министерств" начинает проясняться: сама структура молекул ДНК таит в себе запас памяти о том, как строить тот или иной белок в клетке, поскольку аминокислоты — кирпичики любого белкового здания.
Мы уже говорили, что основная масса клетки состоит из белков, а потому во всех клетках идет синтез белков, причем в одних — непрерывно, а в других — только на протяжении определенной части жизненного цикла. Несмотря на огромные различия в свойствах, все белки состоят из относительно простых молекул 20 аминокислот, и, следовательно, синтез белка сводится в конечном итоге к соединению отдельных аминокислот в длинные цепи.
Как мы видим, в синтезе белка действительно много общего с обычным городским строительством: конструкция (белок) собирается только из простых кирпичиков (аминокислот) по определенному плану (триплетный генетический код ДНК — три рядом расположенных азотистых основания кодируют одну из 20 аминокислот), который известен главному архитектору.
Как же соединяются аминокислоты друг с другом? Оказывается, универсальным цементирующим раствором является так называемая пептидная связь, при помощи которой карбоксильная группа (COOH) одной аминокислоты соединяется с аминогруппой (NH 2) другой аминокислоты. Таким именно путем "собраны" все белковые агрегаты нашего города-государства.
Однако аналогии и на этом не заканчиваются. Дело в том, что на обычной стройке совершенно недостаточно иметь только кирпичи, цементирующий раствор и план строительства. Всем понятно, что без энергии строителей само по себе ничего не выстроится. Точно так же и в клетке. Пептидные связи не возникают сами по себе, если просто смешать разные аминокислоты. Синтезирующие системы клетки должны активно и энергично эти связи создать, и они их действительно создают.
Читать дальшеИнтервал:
Закладка: