Роланд Глазер - Биология в новом свете

Тут можно читать онлайн Роланд Глазер - Биология в новом свете - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биология, год 1978. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Биология в новом свете
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    1978
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Роланд Глазер - Биология в новом свете краткое содержание

Биология в новом свете - описание и краткое содержание, автор Роланд Глазер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Почему слон большой, а мышь маленькая? Почему водомерка может бегать по воде, а человек нет? Можно ли с помощью чисел описать форму живого организма? Что такое бионика и биоэнергетика? И вообще — кто такой современный биолог? Над этими и другими вопросами заставляет задуматься книга профессора Берлинского университета Роланда Глазера, рассказывающая о тесной связи современной биологии с математикой, физикой, техникой.
Актуальность и новизна темы, живой язык, насыщенность конкретными примерами, интересные иллюстрации делают книгу увлекательной для самого широкого круга читателей.

Биология в новом свете - читать онлайн бесплатно полную версию (весь текст целиком)

Биология в новом свете - читать книгу онлайн бесплатно, автор Роланд Глазер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Итак, мы познакомились с заводной "пружиной" биологического механизма — разложением органических молекул. Теперь пора заняться ведомыми "шестеренками", то есть отдельными процессами преобразования энергии. Прежде всего возникает вопрос: откуда вообще берутся органические молекулы? Как известно, существуют автотрофные ("самопитающиеся") и гетеротрофные организмы. Первые синтезируют для себя питательные вещества сами, вторые используют в качестве пищи другие организмы [6] Автотрофам для их существования достаточно наличия воды, двуокиси углерода, неорганических солей и подходящего источника энергии. В отличие от автотрофов гетеротрофные организмы не способны синтезировать питательные вещества из неорганических соединений. Поэтому гетеротрофы (сюда относятся животные, грибы, многие бактерии) вынуждены жить за счет автотрофов. — Прим. ред. . Автотрофные организмы — это зеленые растения, которые мы выращиваем на окнах; как правило, они не нуждаются для своего роста в органических веществах и вполне довольствуются неорганическими солями.

Откуда же в этом случае берется необходимая для обмена веществ энергия? Мы знаем, что растения развиваются только на свету. Свет представляет собой электромагнитные колебания с широким спектром длин волн или частот. Каждый участок видимой области электромагнитного спектра мы воспринимаем как тот или иной цвет. Видимый спектр охватывает область от темно-красного до фиолетового света. Красному свету соответствует наибольшая длина волны (около 0,8 мкм) и наименьшая частота колебаний, фиолетовому — самая короткая длина волны (0,4 мкм) и самая высокая частота колебаний. Существует также инфракрасное, или тепловое, излучение, лежащее в более длинноволновой области за видимым красным светом, и невидимое ультрафиолетовое излучение, расположенное за фиолетовой областью спектра.

Согласно современным физическим представлениям, электромагнитное излучение можно рассматривать не только как волну, но и как поток мельчайших частиц — фотонов. С позиций квантовой теории длина волны (или частота колебаний), от которой зависит окраска света, обусловлена кинетической энергией фотонов. У синего света, обладающего самой короткой длиной волны, фотоны наиболее богаты энергией, у красного света, имеющего наибольшую длину волны, энергия фотонов самая низкая. Свет и темнота, то есть интенсивность света, которую мы измеряем фотоэлектрическим измерителем освещенности, определяются суммарным потоком энергии, равным произведению энергии кванта на поток квантов.

Видимый свет состоит из качественно различных компонентов соответствующих - фото 65

Видимый свет состоит из качественно различных компонентов, соответствующих разным цветам спектра. Каждый компонент характеризуется своей длиной волны, частотой колебаний или энергией кванта

Какое отношение имеют эти рассуждения к фотосинтезу? Они помогают нам установить связь с термодинамикой, о которой мы говорили в этой главе.

Мы уже знаем, что тепловую энергию можно использовать только в том случае, если существует разность температур. Солнечные батареи, применяющиеся в технике, работают в основном с использованием теплового компонента света, т. е. области, наименее богатой энергией. Солнечные лучи фокусируются в одной точке, в результате выделяется большое количество тепла, которое можно использовать непосредственно или преобразовать в иные виды энергии. Однако в технике существуют и другие преобразователи, солнечной энергии, которые превращают энергию света в электрический ток, минуя теплоту. К ним, например, относятся уже упоминавшиеся фотоэлектрические измерители освещенности.

Растения также используют отнюдь не тепловой компонент солнечного света. Такой принцип преобразования энергии не только рациональнее теплового, он целесообразен еще и потому, что биологические объекты могут нагреваться выше температуры окружающей среды лишь в очень ограниченных пределах. А ведь для эффективного использования тепла необходимы большие разности температур, что, конечно, приведет к разрушению клеток организма. В этом отношении свет с короткой длиной волны, т. е. с высокой энергией квантов, обладает неоспоримыми преимуществами. Такая энергия уже не действует как теплота, не действует просто потому, что температура вещества отражает тепловое движение его молекул и атомов, а кванты с высокой энергией не могут заставить колебаться достаточно быстро эти относительно большие частицы.

Высокочастотный видимый свет способен индуцировать колебания лишь отдельных частей молекул и атомов, например электронов внешней оболочки. Несмотря на это, излучение с большей энергией формально связывают с более высокой температурой. Иногда говорят даже о температуре излучения, подразумевая под этим специфический спектр излучения нагретых тел. Например, в электрических лампочках температура излучения изменяется от температуры красного до температуры белого каления металлической нити.

Хлорофилл не растворен однородно в цитоплазме растительной клетки а - фото 66

Хлорофилл не растворен однородно в цитоплазме растительной клетки, а упорядоченно расположен в гранах — субмикроскопических структурах хлоропластов

Живая природа сделала важное изобретение. Она создала хлорофилл, магнийсодержащий хромопротеид, то есть окрашенный белок, который в большое количестве содержится в растениях и обусловливает зеленый цвет листьев. Он поглощает свет в двух интервалах длин волн — наиболее активно в красной области, длина волны 0,68 мкм, и немного хуже — в синей, длина волны 0,44 мкм. Второй пик поглощения света имеет для фотосинтеза решающее значение. Здесь заключена энергия очень высокого "качества", растение отфильтровывает из всего солнечного спектра кванты с такой энергией, которые легче всего использовать.

Как в данном случае происходит процесс преобразования энергии? Мы уже говорили, что свет с высокой энергией вызывает колебания не столько самих молекул, сколько отдельных их частей. Высокая энергия оказывает воздействие только на электроны. Вспомним наши рассуждения о химической энергии и модели атома Бора с его электронными орбитами: каждой электронной орбите соответствует определенный энергетический уровень. При поглощении фотона энергия электрона увеличивается, в результате он переходит на более удаленную от ядра орбиту.

Обычно электрон быстро возвращается в исходное состояние, отдавая при этом "лишнюю энергию" в виде флуоресценции [7] Флуоресценция (от названия минерала "флюорит", у которого впервые была обнаружена флуоресценция, и латинского escent — суффикс, означающий слабое действие) — световое излучение, очень быстро затухающее после окончания возбуждения (время затухания около 10 -8 с). Флуоресценция возникает в результате самопроизвольных переходов возбужденных молекул (атомов) в нормальное состояние. По спектрам флуоресценции можно судить о свойствах молекул. — Прим. ред. . Особенность молекулы хлорофилла и ее белкового окружения в хлоропласте растительной клетки состоит только в том, что свой обратный путь электрон проходит через "машину" обмена веществ, которая забирает и использует энергию, освобождающуюся при переходе электрона в прежнее состояние. Помимо всего прочего, при этом возникает АТФ, аденозинтрифосфат, который уже знаком нам как химический аккумулятор. Синтез глюкозы из углекислого газа воздуха и воды, обычно называемый фотосинтезом, является вторичным процессом, в ходе которого используется химическая энергия образовавшихся молекул АТФ.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Роланд Глазер читать все книги автора по порядку

Роланд Глазер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Биология в новом свете отзывы


Отзывы читателей о книге Биология в новом свете, автор: Роланд Глазер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x