Крейг Вентер - Жизнь на скорости света. От двойной спирали к рождению цифровой биологии
- Название:Жизнь на скорости света. От двойной спирали к рождению цифровой биологии
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2018
- Город:Москва
- ISBN:978-5-17-094327-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Крейг Вентер - Жизнь на скорости света. От двойной спирали к рождению цифровой биологии краткое содержание
Жизнь на скорости света. От двойной спирали к рождению цифровой биологии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Последовательность ДНК непосредственно кодирует структуру каждого белка, определяющую его активность. Генетический текст определяет линейную последовательность аминокислот, которая в свою очередь определяет сложную трехмерную структуру окончательного белка. После синтеза эта линейная полипептидная цепочка складывается в свою характерную форму: некоторые части образуют пластины, другие – стопки, складки, завитушки, закручиваются в спирали и в другие сложные конфигурации, которыми определяется работа механизма. Некоторые части белковой машины гибкие, другие – жесткие. Некоторые белки – это сборочные узлы, части большей трехмерной белковой машины.
Давайте посмотрим на АТФ-синтетазу как на один из примечательных и ярких примеров молекулярной машины. Этот фермент, в двести тысяч раз меньше булавочной головки, сделан из тридцати одного белка и, вращаясь с частотой 60 раз в секунду, способен создавать энергетическую валюту клеток – молекулу аденозинтрифосфата, или АТФ. Вы не смогли бы двигаться, думать или дышать без этого механизма. Другие белки – это моторы, как динеин, за счет которого движется сперматозоид; миозин, который движет мышцами; и кинезин, который «ходит» на паре ножек (когда присоединяется топливо в виде АТФ, одна ножка отгибается и шлепает вокруг, пока не зацепится, чтобы сделать следующий шаг) и имеет хвост, чтобы возить грузы по клеткам. Некоторые из этих транспортных роботов приспособлены для перемещения только одного вида груза: таков гемоглобин, который состоит из четырех белковых цепочек – двух альфа и двух бета, каждая из которых располагает кольцеобразной группой гема, в центре которой находится атом железа, чтобы разносить кислород по всему телу. Железо обычно крепко сцепляется с кислородом, но этот созданный эволюцией механизм обеспечивает обратимую связь молекулы кислорода с каждым из четырех гемов в каждой молекуле гемоглобина.
Светопоглощающий пигмент – это секрет одной из самых важных на свете машин, той, которая управляет экономикой жизни океанов и поверхности планеты. Хотя разные виды растений, водорослей и бактерий развили различные механизмы для запасания световой энергии, у них у всех есть структура, называемая фотохимическим реакционным центром. Там можно найти белки-антенны, включающие в себя несколько молекул светопоглощающего пигмента хлорофилла. Они улавливают солнечный свет в виде частиц света – фотонов, а потом проводят их энергию через серию молекул в реакционный центр, где она используется для чрезвычайно эффективного превращения углекислоты в сахара. Фотосинтетические процессы происходят в местах, настолько плотно набитых пигментными молекулами, что там вступают в игру квантово-механические процессы {63} 63 Engel, Gregory S., Tessa R. Calhoun, Elizabeth L. Read, Tae-Kyu Ahn, Tomaš Mancal, Yuan-Chung Cheng, Robert E. Blankenship & Graham R. Fleming. “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.” Nature 446, стр. 782–786 (12 апреля 2007).
. (Самая головокружительная ветвь физики, квантовая механика – разработанная в числе других Эрвином Шрёдингером, – имеет дело с микроскопическими явлениями.) Это одна из нескольких квантовых машин, используемых живыми существами в зрении, электронном и протонном туннелировании, обонянии и магниторецепции {64} 64 Fleming, Graham R., Gregory D. Scholes, Yuan-Chung Cheng. “Quantum effects in biology.” Procedia Chemistry , Vol. 3, Issue 1, 2011, стр. 38–57, ISSN1876–6196, 10.1016/j.proche.2011.08.011. http://www.sciencedirect.com/science/article/pii/S1876619611000507
. Это выдающееся открытие – еще одно доказательство идей Шрёдингера, который также рассматривал возможность того, что квантовые флюктуации играют роль в биологии {65} 65 Martin-Delgado, M. A. “On Quantum Effects in a Theory of Biological Evolution.” Scientific Reports 2, Article number: 302, 12 марта 2012.
.
Каждая молекулярная машина создана эволюцией для автоматического выполнения очень специфической задачи, от восприятия зрительных образов до сгибания мышц. Вот почему можно думать о них как о маленьких роботах. Как писали Чарльз Тэнфорд и Жаклин Рейнольдс в книге «Природные роботы» (2001), «у него нет сознания; он не управляется разумом или высшим центром. Всё, что делает белок, заложено в его линейный текст, производный от текста ДНК».
Самый важный прорыв в молекулярной биологии после открытия генетического кода был в определении деталей главного робота – рибосомы, которая занимается синтезом белка и таким образом направляет производство всех остальных клеточных роботов. Молекулярные биологи десятки лет знали, что в рибосоме сосредоточен центр всех танцев с производством белков. Чтобы функционировать, рибосоме нужны две вещи: матричная РНК (мРНК), инструкция по изготовлению белка, скопированная из хранилища генетической информации в клетке – с ДНК; и транспортная РНК (тРНК), которая приносит на хвосте аминокислоты, используемые для создания белка. Рибосома кодон за кодоном считывает последовательность с мРНК и к каждому кодону подбирает тРНК с соответствующим антикодоном, выстраивая их груз – аминокислоты – в правильном порядке. Рибосома также действует как катализатор-рибозим: соединяет аминокислоты ковалентной химической связью, добавляя их тем самым к растущей белковой цепочке. Синтез прекращается, когда в последовательности РНК появляется кодон «стоп», но после этого полимер из аминокислот должен еще сложиться в нужную трехмерную структуру, чтобы стать биологически активным белком.
Бактериальные клетки содержат около тысячи рибосомных комплексов, что позволяет им непрерывно синтезировать белок – как для замены деградировавших белковых молекул, так и для изготовления новых для дочерних клеток во время деления. Рибосому можно рассматривать под электронным микроскопом и видеть, как она изгибается и меняет форму в ходе работы. Проворот храповика {66} 66 Frank, Joachim, and Rajendra Kumar Agrawal. “A ratchet-like inter-subunit reorganization of the ribosome during translocation.” Nature 406, стр. 318–322 (20 июля 2000).
в глубине рибосомы – ключевой момент белкового синтеза. Весь синтез белка происходит чрезвычайно быстро: сборка цепочки длиной около ста аминокислот занимает секунды.
Как и в случае двойной спирали, выявить подробности строения рибосомы удалось с помощью рентгеновской кристаллографии. Сначала, однако, надо было заставить рибосомы кристаллизоваться – как кристаллизуется из раствора соль, когда выпаривается вода, – чтобы получить хорошо организованные кристаллы из миллионов рибосом, собранных в правильные структуры, которые можно изучать с помощью рентгеновских лучей. Ключевое открытие было сделано в 1980-х, когда Ада И. Йонат в Израиле в содружестве с Хайнцем-Гюнтером Виттманом в Берлине вырастили кристаллы из бактериальных рибосом, выделенных из микроорганизмов горячих источников и Мертвого моря. Секреты бактериальной рибосомы были раскрыты в 2005 году, а строение эукариотной – дрожжевой – рибосомы в высоком (трехангстремном) разрешении было опубликовано французской группой в декабре 2011 года [6] Один ангстрем – это примерно размер одного атома, одна десятимиллиардная метра.
.
Интервал:
Закладка: