Крейг Вентер - Жизнь на скорости света. От двойной спирали к рождению цифровой биологии
- Название:Жизнь на скорости света. От двойной спирали к рождению цифровой биологии
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2018
- Город:Москва
- ISBN:978-5-17-094327-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Крейг Вентер - Жизнь на скорости света. От двойной спирали к рождению цифровой биологии краткое содержание
Жизнь на скорости света. От двойной спирали к рождению цифровой биологии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Тот факт, что интактные молекулы амплифицируются эффективнее, чем расщепляемая эндонуклеазой ДНК, означает, что мы можем использовать вторую реакцию ПЦР для повышения доли синтетических фрагментов без ошибок. При таком подходе частота ошибок обычно меньше, чем одна на 15 000 пар оснований, и этот результат может быть еще улучшен, если проводить дополнительные сеансы исправления ошибок. На этом этапе мы получали молекулы ДНК с достаточной точностью, чтобы они могли быть конечным продуктом в полном смысле слова, например ДНК-вакциной (ДНК, вставляемой в клетки тела, чтобы производить вакцинирующий белок). Но потенциал метода неограничен. С синтезированной ДНК в конце концов можно будет создавать любые формы жизни.
Используя бесклеточный синтез белка in vitro , вроде того, что впервые разработал Маршалл Ниренберг в 1960-х, конструкты из синтетической ДНК теперь можно применять для получения белков в автоматизированной системе. ДНК фага или вируса нуждается лишь в попадании в рецептивную бактериальную клетку, где она перехватит механизмы синтеза клеточных белков и ДНК и наделает множество своих копий.
Иногда бывает трудно увидеть за горизонтом сегодняшних возможностей, как технология, подобная «биологическому телепортеру», кристаллизуется из идеи в нечто реальное. Так случилось, конечно, с лазером, который первоначально подавался как решение, нуждающееся в проблеме {244} 244 Townes, Charles H. “The first laser.” In A Century of Nature : Twenty-One Discoveries that Changed Science and the World . Laura Garwin and Tim Lincoln, eds. University of Chicago Press (2003), стр. 107–112.
. Но я думаю, мы уже можем осознать, как повлияет на наше будущее возможность перевести программу жизни в свет. Способность отправить текст ДНК куда угодно по планете за доли секунды включает в себя любые возможности, касающиеся лечения болезней. Эта информация может быть текстом новой вакцины, белкового лекарства (вроде инсулина или гормона роста), фага для борьбы с инфекцией, вызванной устойчивым к антибиотикам бактериальным штаммом, или новой клетки для выработки лекарства, пищи, топлива или чистой воды. В сочетании с домашними синтезаторами эта технология позволит еще и подогнать лечение под всех и каждого, чтобы оно соответствовало генетическим особенностям пациента и в результате давало меньше побочных эффектов.
Самое очевидное и безотлагательное применение этих возможностей – распространение вакцины в случае начала пандемии гриппа. Последняя такая вспышка была объявлена 11 июня 2009 года, когда ВОЗ расценила вирус гриппа H1N1 («свиной грипп») как первый пандемический штамм более чем за сорок лет, запустив международную реакцию на эту крупную угрозу. Результатом стала самая быстрая разработка глобальной вакцины в истории. За шесть месяцев были произведены и распределены по всему миру сотни миллионов доз вакцины, продемонстрировав способность государственных и частных учреждений всего мира к быстрой мобилизации и сотрудничеству.
Реакция была беспрецедентно быстрой – но все же недостаточно быстрой. Значительная часть вакцины оказалась доступной только через два месяца после прохождения вирусной инфекцией пика, оставив большинство населения на милость патогена в разгар его циркуляции. И хотя уровень смертности был относительно низок, множество людей встретились с вирусом. От H1N1 умерло около 250 000 человек, и вследствие природы этого конкретного гриппа большинство жертв было молодыми. Будь этот вирус более патогенным, задержка с доступностью вакцины могла привести к тяжелому кризису в здравоохранении, способному вызвать в пораженных городах конфликты, беспорядки и социальные взрывы.
Век тому назад очень похожий патогенный штамм гриппа обошел планету с опустошительными последствиями. Потери от пандемии 1918–1920 годов – около 50 миллионов жизней по всему миру – были больше, чем от Первой мировой войны. Один врач сказал, что это «был самый жестокий тип пневмонии, какой когда-либо видели». Используя данные по смертности от этой пандемии, команда под руководством Кристофера Мюррея из Гарвардского университета предсказала в Lancet , что, если похожая пандемия случится сегодня, за год умереть могут 62 миллиона человек – 96 % из них в развивающихся странах. Последняя пандемия «свиного гриппа» была призывом к оружию и выявила необходимость быстро доставлять людям вакцины.
SGI и Институт Крейга Вентера анонсировали трехлетнее соглашение о сотрудничестве с компанией Novar-tis об использовании инструментов и технологий синтетической геномики для ускорения производства вакцинных штаммов гриппа. Вакцинный штамм – это стартовая культура вируса, живой эталонный вирус, основа для широкомасштабного выращивания вакцинного вируса. Соглашение, отмеченное наградой от Управления перспективных биомедицинских исследований и развития США ( BARDA ), может в итоге обеспечить более эффективный ответ и на сезонные, и на пандемические вспышки гриппа.
В настоящее время Novartis и другие компании – производители вакцин в идентификации и раздаче вакцинных вирусов полагаются на ВОЗ. Чтобы ускорить процесс, мы используем метод «обратной вакцинологии», который впервые применил для разработки менингококковой вакцины Рино Раппуоли, ныне работающий в Novartis . Основная идея состоит в том, что весь патогенный геном вируса гриппа можно обследовать при помощи биоинформационного подхода к идентификации и анализу его генов. Далее выбирают конкретные гены, продукт которых может стать хорошей целью для вакцины – например, белки капсулы. Эти белки затем подвергают обычному тестированию на иммунный ответ.
Моя команда секвенировала гены, представляющие разнообразие вирусов гриппа, появлявшихся начиная с 2005 года. Мы секвенировали полные геномы большой коллекции изолятов человеческого гриппа, а также избранных штаммов птичьего и других нечеловеческих гриппов, важных для эволюции вирусов с пандемическим потенциалом, и сделали эту информацию доступной для всех. Штаммы выбирали так, чтобы они представляли много подтипов с широким географическим и хронологическим распределением. В результате нашего сотрудничества Novartis и SGI разработают «банк» искусственно сконструированных вакцинных вирусов, которые можно пускать в производство сразу же, как только ВОЗ установит циркулирующие штаммы гриппа. Эта технология может сократить время на производство вакцины до двух месяцев, что будет существенным выигрышем в случае пандемии.
Стандартное производство вакцины от гриппа занимает много времени. Важный этап, ограничивающий скорость, – это промежуток между выделением штамма (когда ВОЗ и CDC установят циркулирующий штамм(ы) и выпустят глобальную рекомендацию по созданию вакцинного вируса, специфического для данного гриппа) – и собственно производством вакцины. Традиционный метод производства основан на выращивании вируса в оплодотворенных куриных яйцах. В целом на процесс требуется около тридцати пяти дней, куда входят тестирование и распределение эталонного вируса, одновременное заражение яиц стандартными опорными штаммами и изоляция и очистка посевного материала вакцины. Воспользовавшись главными достижениями синтетической биологии и клеточного производства и добавив захватывающую идею цифро-биологического преобразования, мы с Novartis произвели вакцину лучшего качества менее чем за пять дней.
Читать дальшеИнтервал:
Закладка: