Крейг Вентер - Жизнь на скорости света. От двойной спирали к рождению цифровой биологии
- Название:Жизнь на скорости света. От двойной спирали к рождению цифровой биологии
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2018
- Город:Москва
- ISBN:978-5-17-094327-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Крейг Вентер - Жизнь на скорости света. От двойной спирали к рождению цифровой биологии краткое содержание
Жизнь на скорости света. От двойной спирали к рождению цифровой биологии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Это, конечно, верно, что клетки оказались первичной биологической основой для всего, что мы знаем как жизнь. Понимание их структуры и содержимого стало в результате основой для важных фундаментальных дисциплин – клеточной биологии и биохимии. Однако, как я надеюсь показать, без своей генетической информационной системы клетки проживут от нескольких минут до нескольких дней. Без генетической информации у них нет средств для создания белковых компонентов или их оболочки из липидных молекул, которые образуют мембрану, удерживающую их водянистое содержимое. Они не будут эволюционировать, они не будут воспроизводиться, и они не будут жить.
Хотя мы осознаем, что миф, сложившийся вокруг Вёлерова синтеза мочевины, неточно отражает исторические факты, связанные с этим сюжетом, фундаментальная логика его эксперимента по-прежнему оказывает мощное и обоснованное влияние на научные методы. Сегодня стандартный способ доказать, что предполагаемая химическая структура исследуемого вещества верна, состоит в том, чтобы синтезировать такую структуру и показать, что результат синтеза имеет все свойства природного продукта. Десятки тысяч научных статей начинаются с такой предпосылки или содержат фразу «доказано синтезом». Мое собственное исследование руководствовалось принципами письма Вёлера от 1828 года. Когда в мае 2010 года моя группа в Институте Крейга Вентера (JCVI) синтезировала целую бактериальную хромосому посредством компьютерной программы и четырех бутылей химикатов, а потом вставила хромосому в клетку, создав первый синтетический организм, то мы действовали по аналогии с работой Вёлера {30} 30 Moreno, Jonathan D., Editor-in-Chief of Science Progress : http://scienceprogress.org/2010/05/synbio-ethics/.
и его «синтезом как доказательством».
Материалистический взгляд на жизнь как машину приводил некоторых ученых к попытке сотворения искусственной жизни вне биологии, на основе механических систем и математических моделей. К 1950-м, когда ДНК окончательно признали материальным носителем генов, механистический подход уже маячил в научной литературе. В этой версии жизнь должна появляться из сложных механизмов , а не из сложной химии . В 1929 году молодой ирландский кристаллограф Джон Десмонд Бернал (1901–1971) представил возможность существования машин с жизнеподобной способностью к воспроизведению себя в «постбиологическом будущем», которое он описал в книге «Мир, плоть и дьявол»: «Создать саму жизнь будет лишь предварительным этапом. Изготовление жизни как таковой будет важно лишь тогда, если мы собираемся позволить ей заново развиваться самой».
Логичный рецепт по сотворению этих сложных механизмов был разработан в следующем десятилетии. В 1936 году Алан Тьюринг, криптограф и пионер искусственного интеллекта, описал то, что обрело известность как машина Тьюринга, а именно набор инструкций, написанных на ленте. Тьюринг также определил универсальную машину Тьюринга, которая может выполнять любые вычисления, для которых можно написать инструкции. Это стало теоретической основой цифрового компьютера.
Идеи Тьюринга были развиты далее в 1940-х знаменитым американским математиком и энциклопедистом Джоном фон Нейманом, который задумал самовоспроизводящуюся машину. Подобно тому, как Тьюринг предвидел универсальную машину, фон Нейман предвидел универсальный конструктор. Родившийся в Венгрии гений очертил свои идеи в лекции «Общая и логическая теория автоматов» на симпозиуме Хиксона 1948 года в Пасадене, Калифорния. Он указал, что «живые организмы гораздо более сложны и тоньше устроены и, следовательно, значительно менее понятны в деталях, чем искусственные автоматы». Тем не менее он утверждал, что некоторые из закономерностей, которые мы наблюдаем у первых, могут быть поучительными для размышлений о последних и их проектирования.
Машина фон Неймана включает в себя «ленту» из ячеек, которая кодирует последовательность выполняемых машиной действий. Используя записывающую головку (обозначенную как «сборочный манипулятор»), машина может построить новую систему ячеек – в частности, может сделать полную копию и себя, и ленты. Репликатор фон Неймана был неуклюжей на вид структурой, состоящей из основной области в восемьдесят на четыреста квадратов, сборочного манипулятора и «хвоста Тьюринга» – полосы закодированных инструкций, состоящей из еще 150 000 квадратов. («Автоматы [Тьюринга] – это чисто вычислительные машины, – пояснял фон Нейман. – Что на самом деле нужно – так это автомат, производящий другие автоматы» {31} 31 Dyson, George. Turing’s Cathedral: The Origins of the Digital Universe (Allen Lane, London, 2012), стр. 284.
.) Все это творение состояло примерно из двухсот тысяч таких «клеток». Чтобы воспроизводиться, машина использовала «нейроны», обеспечивающие логическое управление, передающие клетки для передачи сообщений от центров управления, и «мышцы», чтобы изменять окружающие клетки. По инструкциям хвоста Тьюринга машина выдвигала манипулятор, а затем водила им вперед-назад, создавая копию себя при помощи ряда логических манипуляций. Копия затем могла сделать новую копию и так далее.
Природа этих инструкций стала с тех пор яснее по мере параллельного развития цифрового мира и биологических миров науки. Эрвин Шрёдингер писал тогда то, что вроде бы стало первым упоминанием его «кодированной записи»: «Именно эти хромосомы или, возможно, только осевая или скелетная нить того, что мы видим под микроскопом как хромосому, содержат в виде своего рода [кодированной записи [5] В русском переводе А. А. Малиновского, откуда взята основная цитата, значится «шифровальный код».
] весь “план” будущего развития индивидуума и его функционирования в зрелом состоянии».
Шрёдингер продолжал утверждать, что «кодированная запись» может быть простой, как бинарный код: «Действительно, число атомов в такой структуре не обязано быть очень велико, чтобы получить практически неограниченное число возможных сочетаний. Для примера вспомним азбуку Морзе. Два разных знака – точка и тире – в хорошо упорядоченных группах не более чем по четыре символа дают тридцать разных спецификаций {32} 32 Schrodinger, Erwin. What is Life? (1944), стр. 20–21.
».
Хотя фон Нейман придумал свой самовоспроизводящийся автомат за несколько лет до того, как в двойной спирали ДНК был открыт реальный наследственный код, он отметил, что у автомата должна быть способность эволюционировать. В своей Хиксоновской лекции он поведал аудитории, что каждая инструкция в такой машине «грубо говоря, выполняет функции гена», и продолжил описанием того, как ошибки автомата «могут проявлять некоторые характерные черты мутации – как правило, летальной, но иногда способной продолжать воспроизводиться вместе с соответствующим изменением признака». Как заметил генетик Сидней Бреннер, можно сказать, что биология дает наилучшие реальные образцы машин Тьюринга и фон Неймана: «Понятие гена как символического – в виде кодированной записи – представления организма – это фундаментальная черта живого мира» {33} 33 Brenner, Sydney, Nature , 482, 461 (2012).
.
Интервал:
Закладка: