Сергей Ястребов - От атомов к древу. Введение в современную науку о жизни
- Название:От атомов к древу. Введение в современную науку о жизни
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5286-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Ястребов - От атомов к древу. Введение в современную науку о жизни краткое содержание
Рекомендуется широкому кругу читателей, всерьез интересующихся современной биологией.
От атомов к древу. Введение в современную науку о жизни - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
310
Hadzi J. An attempt to reconstruct the system of animal classification // Systematic Zoology , 1953, V. 2, № 4, 145–154.
311
Leander B. S. et al. Molecular phylogeny and surface morphology of Colpodella edax (Alveolata): insights into the phagotrophic ancestry of apicomplexans // Journal of Eukaryotic Microbiology , 2003, V. 50, № 5, 334–340.
312
Obornik M. et al. Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again // International Journal for Parasitology , 2009, V. 39, № 1, 1–12.
313
Adl et al. , 2005.
314
Cavalier-Smith T. A revised six-kingdom system of life // Biological Reviews , 1998, V. 73, № 3, 203–266.
315
Finet C. et al. Multigene phylogeny of the green lineage reveals the origin and diversification of land plants // Current Biology , 2010, V. 20, № 24, 2217–2222.
316
Wickett N. J. et al. Phylotranscriptomic analysis of the origin and early diversification of land plants // Proceedings of the National Academy of Sciences , 2014, V. 111, № 45, E4859 — E4868.
317
Graham L. E. et al. Aeroterrestrial Coleochaete (Streptophyta, Coleochaetales) models early plant adaptation to land // American Journal of Botany , 2012, V. 99, № 1, 130–144.
318
Пономаренко А. Г. Основные события в эволюции биосферы // Проблемы доантропогенной эволюции биосферы. — М.: Наука, 1993.
319
Kenrick B. Alternation of generations in land plants: new phylogenetic and palaeobotanical evidence // Biological Reviews , 1994, V. 69, № 3, 293–330.
320
Graham L. E., Cook M. E., Busse J. S. The origin of plants: body plan changes contributing to a major evolutionary radiation // Proceedings of the National Academy of Sciences , 2000, V. 97, № 9, 4535–4540.
321
Журавлев А. Ю. Ранняя история Metazoa — взгляд палеонтолога // Журнал общей биологии. 2014. Т. 75. № 6, 411–465.
322
Fritzsch B., Straka H. Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies // Journal of Comparative Physiology A , 2014, V. 200, № 1, 5–18.
323
Pena J. F. et al. Conserved expression of vertebrate microvillar gene homologs in choanocytes of freshwater sponges // EvoDevo , 2016, V. 7, № 1, 13.
324
James T. Y., Berbee M. L. No jacket required — new fungal lineage defies dress code // Bioessays , 2012, V. 34, № 2, 94–102.
325
Karpov S. A. et al. Obligately phagotrophic aphelids turned out to branch with the earliest-diverging fungi // Protist , 2013, V. 164, № 2, 195–205.
326
Karpov S. A. et al. Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia // Frontiers in Microbiology , 2014, V. 5, 112.
327
Mendoza L., Taylor J. W., Ajello L. The class Mesomycetozoea: a heterogeneous group of microorganisms at the animal-fungal boundary // Annual Reviews in Microbiology , 2002, V. 56, № 1, 315–344.
328
Suga H., Ruiz-Trillo I. Development of ichthyosporeans sheds light on the origin of metazoan multicellularity // Developmental Biology , 2013, V. 377, № 1, 284–292.
329
Paps J., Ruiz-Trillo I. Animals and their unicellular ancestors // eLS , 2010.
330
Sebe-Pedros A. et al. Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki // Molecular Biology and Evolution , 2010, V. 28, № 3, 1241–1254.
331
Sebe-Pedros A., Ruiz-Trillo I. Evolution and Classification of the T-Box Transcription Factor Family // Current Topics in Developmental Biology, 2017, V. 122, 1–26.
332
Sebe-Pedros A. et al. Early evolution of the T-box transcription factor family // Proceedings of the National Academy of Sciences , 2013, V. 110, № 40, 16050–16055.
333
Mikhailov K. V. et al. The origin of Metazoa: a transition from temporal to spatial cell differentiation // Bioessays , 2009, V. 31, № 7, 758–768.
334
Paps J. et al. Molecular phylogeny of unikonts: new insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts // Protist , 2013, V. 164, № 1, 2–12.
335
Sebe-Pedros A., Degnan B. M., Ruiz-Trillo I. The origin of Metazoa: a unicellular perspective // Nature Reviews. Genetics , 2017, V. 18, 498–512.
336
James T. Y. et al. Reconstructing the early evolution of Fungi using a six-gene phylogeny // Nature , 2006, V. 443, 818–822.
337
Xu H. et al. The α-aminoadipate pathway for lysine biosynthesis in fungi // Cell Biochemistry and Biophysics , 2006, V. 46, № 1, 43–64.
338
Vogel H. J. Distribution of lysine pathways among fungi: evolutionary implications // The American Naturalist , 1964, V. 98, № 903, 435–446.
339
Moroz L. L. On the independent origins of complex brains and neurons // Brain, Behavior and Evolution , 2009, V. 74, № 3, 177–190.
340
Moroz L. L. et al. The ctenophore genome and the evolutionary origins of neural systems // Nature , 2014, V. 510, № 7503, 109–114.
341
Jekely G., Paps J., Nielsen C. The phylogenetic position of ctenophores and the origin (s) of nervous systems // EvoDevo , 2015, V. 6, № 1, 1.
342
Малахов В. В. Симметрия и щупальцевый аппарат книдарий // «Биология моря», 2016, т. 42, № 4, 249–259.
343
Holland P. W. H. Did homeobox gene duplications contribute to the Cambrian explosion? // Zoological Letters , 2015, V. 1, № 1, 1.
344
Adl et al. , 2005.
345
Butterfield N. J. Early evolution of the Eukaryota // Palaeontology , 2015, V. 58, № 1, 5–17.
346
Burki F. et al. Phylogenomics reshuffles the eukaryotic supergroups // PloS One, 2007, V. 2, № 8, e790.
347
Hackett J. D. et al. Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates // Molecular Biology and Evolution , 2007, V. 24, № 8, 1702–1713.
348
He D. et al. Reducing long-branch effects in multi-protein data uncovers a close relationship between Alveolata and Rhizaria // Molecular Phylogenetics and Evolution , 2016, V. 101, 1–7.
349
Adl et al. , 2012.
350
Burki F. et al. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins // Proceedings of the Royal Society of London, B: Biological Sciences , 2012, rspb20112301.
351
Cavalier-Smith T. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree // Biology Letters , 2010, V. 6, № 3, 342–345.
352
Cavalier-Smith T. Protist phylogeny and the high-level classification of Protozoa // European Journal of Protistology , 2003, V. 39, № 4, 338–348.
353
Stechmann A., Cavalier-Smith T. The root of the eukaryote tree pinpointed // Current Biology , 2003, V. 13, № 17, R665 — R666.
354
Cavalier-Smith T. Megaphylogeny, cell body plans, adaptive zones: causes and timing of eukaryote basal radiations // Journal of Eukaryotic Microbiology , 2009, V. 56, № 1, 26–33.
355
Roger A. J., Simpson A. G. B. Evolution: revisiting the root of the eukaryote tree // Current Biology , 2009, V. 19, № 4, R165 — R167.
356
Burki et al. , 2007.
357
Baldauf , 2008.
358
Hampl V. et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic «supergroups» // Proceedings of the National Academy of Sciences , 2009, V. 106, № 10, 3859–3864.
359
He D. et al. An alternative root for the eukaryote tree of life // Current Biology , 2014, V. 24, № 4, 465–470.
360
Adl et al. , 2012.
361
Cavalier-Smith T. Deep phylogeny, ancestral groups and the four ages of life // Philosophical Transactions of the Royal Society of London, B: Biological Sciences , 2010, V. 365, № 1537, 111–132.
362
Cavalier-Smith T. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa // European Journal of Protistology , 2013, V. 49, № 2, 115–178.
363
Cavalier-Smith T. Symbiogenesis: mechanisms, evolutionary consequences, and systematic implications // Annual Review of Ecology, Evolution, and Systematics , 2013a, V. 44, 145–172.
364
Cavalier-Smith T. et al. Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa // Molecular Phylogenetics and Evolution , 2014, V. 81, 71–85.
365
Cavalier-Smith T. Origin of animal multicellularity: precursors, causes, consequences — the choanoflagellate / sponge transition, neurogenesis and the Cambrian explosion // Philosophical Transactions of the Royal Society, B: Biological Sciences , 2017, V. 372, 1713.
366
Cavalier-Smith , 2009.
367
Cavalier-Smith T. The origins of plastids // Biological Journal of the Linnean Society , 1982, V. 17, № 3, 289–306.
368
Интервал:
Закладка: