Сергей Ястребов - От атомов к древу. Введение в современную науку о жизни
- Название:От атомов к древу. Введение в современную науку о жизни
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5286-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Ястребов - От атомов к древу. Введение в современную науку о жизни краткое содержание
Рекомендуется широкому кругу читателей, всерьез интересующихся современной биологией.
От атомов к древу. Введение в современную науку о жизни - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Одна из самых поразительных особенностей архей, отличающая их и от бактерий, и от эукариот, касается устройства клеточной мембраны. До открытия архей считалось, что мембрана, состоящая из двух слоев фосфолипидов, абсолютно универсальна и является всеобщим свойством клеточных организмов. Исследования архей начисто опровергли это представление. Сравнение химических компонентов эукариотных, бактериальных и архейных клеточных мембран показывает следующее (см. рис. 5.5):
• Архейные мембранные липиды представляют собой не сложные эфиры с общей формулой R 1−CO−O−R 2, а простые эфиры с общей формулой R 1−O−R 2(см. главу 1). Надо заметить, что основу типичного мембранного липида в любом случае образует глицерофосфат, то есть сложный эфир глицерина и фосфорной кислоты. Но вот жирные «хвосты» у архей присоединены к нему совсем не так, как у всех остальных: не сложными эфирными связями, а простыми.
• Углеводородные гидрофобные цепи мембранных липидов у архей ветвятся за счет множества торчащих в стороны метильных групп (−CH 3). Ни бактериям, ни эукариотам это не свойственно.
• Самое поразительное: у некоторых родов архей (и только у них) мембрана не двуслойная. Вместо бислоя она представляет собой единственный слой из молекул с двумя гидрофильными головками и длинной гидрофобной цепью между ними. Такие липиды иногда называют биполярными.
Как это объяснить? Биохимики считают, что все перечисленные химические особенности мембран полезны для жизни в экстремальных условиях — например, при высокой температуре или высокой кислотности. А мы уже знаем, что многие современные археи как раз в таких условиях и живут. Значит, налицо просто далеко зашедшее приспособление?
Увы, не все так просто. У архейных мембран есть еще одна важнейшая особенность. Дело в том, что у бактерий с эукариотами и у архей для синтеза мембранных липидов используются разные стереоизомеры глицерофосфата. У большинства живых организмов в мембраны входит L-глицерофосфат, но у архей — почему-то D-глицерофосфат [42] Lombard J., Lopez-Garcia P., Moreira D. The early evolution of lipid membranes and the three domains of life // Nature Reviews. Microbiology , 2012, V. 10, № 7, 507–515.
. И вот это уже гораздо труднее объяснить приспособлением к каким бы то ни было внешним условиям. Мы ведь знаем, что на «обычные» физико-химические свойства веществ стереоизомерия практически не влияет. С точки зрения выживания при высокой температуре, кислотности или солености абсолютно неважно, какой стереоизомер глицерофосфата выбран для мембран. К тому же показано, что мембрана, включающая оба изомера одного и того же фосфолипида, будет физически неустойчивой, — то есть переходные состояния тут маловероятны. А ферменты, взаимодействующие с разными стереоизомерами мембранных липидов, отличаются друг от друга настолько сильно, что проще всего предположить их совершенно независимое происхождение.
Как может выглядеть эволюционный сценарий, сводящий воедино все эти факты? Тут допустимы самые смелые предположения. Может быть, общие предки бактерий, эукариот и архей вообще не имели никакой мембраны, то есть еще не были клетками? [43] Koga Y. et al. Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent // Journal of Molecular Evolution , 1998, V. 46, № 1, 54–63.
Или мембрана у них была, но не липидная, а неорганическая, например железо-серная? [44] Martin W., Russell M. J. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells // Philosophical Transactions of the Royal Society of London, B: Biological Sciences , 2003, V. 358, № 1429, 59–85.
С другой стороны, современные генетические данные позволяют считать, что у общего предка всех клеточных форм жизни уже было несколько интегральных белков, приспособленных к работе в мембране и бесполезных без нее. Тогда получается, что какая-то мембрана там все же была. В любом случае этот узел еще далеко не распутан.

6. Углеводы
Ну вот и присмотрись к себе, как сидишь ты возле бюро в халате. В руках-то что у тебя? Чашечка кофе? Еще и с сахаром? А думал ли ты, сколько невольников погибло на плантациях, кровью под бичами надсмотрщиков облившись, сколько жизней загублено было и что слез пролито, дабы кофе вот этот к тебе в чашечку попал? Про сахар и упомянуть страшно.
Анна Коростелева. Александр РадищевУглеводы по многим своим свойствам противоположны липидам. Если липиды — самые гидрофобные биологически активные вещества, то углеводы, пожалуй, самые гидрофильные. Значение углеводов для жизни так же огромно, как и значение липидов, хотя функции у них другие. Посмотрим же на них повнимательнее.
Мы уже знаем, что углевод — это спирт, одновременно являющийся или альдегидом, или кетоном. Углеводы бывают довольно разные. Основу любого углевода из тех, что могут заинтересовать нас в этой главе, образует цепочка, состоящая или из пяти, или из шести атомов углерода (см. рис. 6.1). Один из этих атомов углерода входит в состав либо альдегидной группы (если он на конце), либо кетогруппы (если он внутри цепочки). А ко всем остальным атомам углерода присоединены гидроксильные группы, как в спирте. Вот, собственно, и все (см. главу 1). Добавим, что в обиходе углеводы, подходящие под это описание, принято называть сахарами.

Например, что такое глюкоза? Это сахар с шестью атомами углерода, пятью гидроксильными группами и альдегидной группой. А фруктоза — сахар с шестью атомами углерода, пятью гидроксильными группами и кетогруппой. Причем и глюкоза, и фруктоза имеют формулу C 6H 12O 6. Иначе говоря, это изомеры.
Бывают и пятиуглеродные сахара. Например, рибоза — сахар с пятью атомами углерода, четырьмя гидроксильными группами и альдегидной группой. В отличие от глюкозы и фруктозы, рибоза используется как пищевая добавка относительно редко, хотя в любых продуктах ее все равно полно, потому что биохимическое значение этого вещества колоссально.
А бывают ли сахара с другой длиной углеродных цепочек — например, трех-, четырех-, семи-, восьми- или девятиуглеродные? С точки зрения химии — конечно же, бывают. Иногда они встречаются и в живых организмах: например, семиуглеродные сахара могут быть промежуточными продуктами в синтезе липидов и в некоторых других биохимических процессах. Но в целом биологическое значение этих сахаров не слишком велико, и нас они пока что могут не волновать.
Молекулы сахаров не слишком сложны. Но есть один фактор, делающий их гораздо более разнообразными, чем можно было бы подумать, глядя на обычные графические формулы. Этот фактор — стереоизомерия.
Читать дальшеИнтервал:
Закладка: