Сэм Кин - Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде

Тут можно читать онлайн Сэм Кин - Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биология, издательство Array Литагент «5 редакция», год 2015. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «5 редакция»
  • Год:
    2015
  • Город:
    Москва
  • ISBN:
    978-5-699-83676-5
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Сэм Кин - Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде краткое содержание

Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде - описание и краткое содержание, автор Сэм Кин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга «Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде» посвящена одному из самых важных и интересных разделов биологии – генетике. Вы познакомитесь с историей генетики и узнаете о расшифровке структуры ДНК и проекте «Геном человека». Для всех увлеченных и неравнодушных.

Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде - читать онлайн бесплатно полную версию (весь текст целиком)

Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде - читать книгу онлайн бесплатно, автор Сэм Кин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

S-A-T-O-R

A-R-E-P-O

T-E-N-E-T

O-P-E-R-A

R-O-T-A-S [22]

Насчитывая примерно две тысячи лет от роду, данная надпись на порядок младше, чем по-настоящему древние палиндромы в ДНК, которая создала целых два вида палиндромов. Во-первых, это фразы традиционного («А роза упала на лапу Азора») типа: например, Г-А-Т-Т-А-Ц-А-Т-Т-А-Г. Однако поскольку АТ и ЦГ – это парные основания, ДНК образовывает и другие, менее явные палиндромы, которые спереди читаются по одной нити, а сзади – по другой. Сравните нить Ц-Т-А-Г-Ц-Т-А-Г, затем представьте основания, которые должны появиться на другой нити: Ц-А-Т-Ц-Г-А-Т-Ц. Это совершенные палиндромы.

Безобидный на вид, этот второй тип палиндрома может нагнать страху на любого микроба. Давным-давно многие микробы выделяли специальные белки (под названием «ферменты рестрикции»), которые могли резать ДНК подобно кусачкам. И по какой-то причине эти ферменты могут разрезать ДНК только в ее симметричных, палиндромных участках. Подобные надрезы служат и полезным целям: к примеру, выбрасывают из спирали основания, пораженные радиацией, или снимают напряжение в сильно запутанной ДНК. Однако непослушные микробы в основном использовали эти белки, чтобы воевать друг с другом и перерабатывать чужой генетический материал. В результате микробы методом проб и ошибок научились избегать даже неочевидных палиндромов.

Впрочем, высшие существа, к которым относимся мы сами, тоже не то чтобы толерантны к палиндромам. Снова рассмотрим Ц-Т-А-Г-Ц-Т-А-Г и Г-А-Т-Ц-Г-А-Т-Ц. Отметим, что начало каждого из палиндромных сегментов может образовывать пары оснований со своей второй половиной: первая буква с последней (Ц…Г), вторая с предпоследней (А…Т) и т. д. Но для того, чтобы сформировать эти внутренние связи, одна сторона нити ДНК должна абстрагироваться от другой и выгнуться вверх, образовав выступ. Такая структура (так называемая шпилька) благодаря симметричному строению может образовывать ДНК-палиндром любой длины. Как и следовало ожидать, «шпильки» могут разрушать ДНК так же, как и узлы: разрушая клеточные механизмы.

Палиндромы могут возникнуть в ДНК двумя способами. Самые короткие ДНК-палиндромы, которые становятся причиной появления «шпилек», возникают случайно, когда А, Ц, Г и Т организуются симметрично. Более длинные палиндромы также перетряхивают наши хромосомы, и многие из них – особенно те, которые наносят серьезный ущерб маленькой Y-хромосоме – возможно, возникают в результате специфического двухступенчатого процесса. По различным причинам хромосомы иногда случайным образом дублируют отрезки ДНК, а потом вставляют вторую копию куда-нибудь вниз по линии. Также хромосомы могут (иногда после разрыва сразу двух нитей) разворачивать отрезок ДНК на 180 градусов и прикреплять их задом наперед. Действуя в тандеме, дупликация и инверсия создают палиндром.

Большинство хромосом, однако, препятствуют появлению длинных палиндромов или по крайней мере стараются не допускать инверсий, которые они создают. Инверсия может разрушить или «отключить» гены, оставив хромосому неэффективной. Также инверсии могут резко уменьшить шансы хромосомы на кроссинговер – а это огромная потеря. Кроссинговер (когда одинаковые хромосомы пересекаются и обмениваются сегментами) позволяет хромосоме поменять свой генетический материал, приобрести лучшие версии, или версии, которые лучше работают вместе и делают хромосому более жизнеспособной. Не менее важно то, что хромосомы пользуются преимуществами кроссинговера, чтобы выполнить проверку контроля качества: они могут выстроиться в две шеренги, «глаза в глаза» и заменить мутировавшие гены немутировавшими. Однако хромосома может пересекаться только с хромосомой, которая выглядит точно так же. Если же партнер выглядит подозрительно не похоже, хромосома опасается получить болезнетворную ДНК и отказывается от обмена. Инверсии на этом фоне выглядят чертовски подозрительно, поэтому в подобных обстоятельствах хромосомы с палиндромами просто игнорируются.

У Y-хромосомы нетерпимость к палиндромам проявилась с самого начала. Давным-давно, еще до того, как млекопитающие отделились от рептилий, Х и Y были парными хромосомами и пересекались часто. Затем, 300 миллионов лет назад, один из генов хромосомы Y мутировал и превратился в «главный выключатель», заставляющий яички развиваться. До этого, вероятно, пол животного зависел от температуры, при которой самка высиживает яйца – схожая не имеющая отношения к генетике система определяет пол черепах и крокодилов. Благодаря этому изменению Y стала «мужской» хромосомой и, пройдя через разнообразные процессы, сконцентрировала другие мужские гены, преимущественно связанные с производством сперматозоидов. Как следствие, Х и Y стали выглядеть по-разному и, соответственно, уклоняться от кроссинговера. Хромосома Y не захотела рисковать своими генами, которые могла переписать злобная Х-хромосома, в то время как Х не хочет приобретать грубые гены хромосомы-мужлана, которые могут повредить женским ХХ-организмам.

После того как кроссинговер замедлился, Y-хромосома стала более терпимой к инверсиям, как коротким, так и длинным. Фактически она в своей истории претерпела четыре крупные инверсии, реально глобальные перестройки ДНК. Каждая из них создала много замечательных палиндромов – один из них сразу на три миллиона символов, но каждая вместе с тем приводила к тому, что кроссинговер с Х-хромосомой становился все тяжелее. В этом бы не было особого значения, если не учитывать, что кроссинговер позволяет хромосомам заменять злокачественные мутации. Х-хромосомы могут делать это в женских организмах с парой ХХ, но когда Y-хромосома потеряла своего партнера, злокачественные мутации начали накапливаться. И с появлением каждой новой мутации у клеток не было иного выбора, кроме как избавляться от Y-хромосомы и удалять мутировавшую ДНК. Результаты оказались неутешительны. Y-хромосома, когда-то имевшая внушительные размеры, потеряла почти все свои гены: из 1400 осталось чуть больше 20. При таком раскладе биологи поспешили записать «игреков» в доходяги. Похоже, что этим хромосомам суждено продолжать накапливать неблагополучные мутации и становиться короче и короче, пока эволюция не покончит с Y-хромосомами – и, возможно, в придачу и с мужчинами – совсем.

Палиндромы, однако, могут помиловать Y-хромосому. Шпильки в цепи ДНК – это плохо, но если Y-хромосома загнется в гигантскую шпильку, это может привести к тому, что два ее палиндрома – с тем же набором генов, но идущим в противоположном порядке – вступят в контакт. Это позволит Y-хромосоме проверяться на наличие мутаций и заменять проблемные участки. Это все равно что написать: «А роза упала на лапу Азора» на листе бумаги, сложить бумагу чтобы буквы двух половин совпали, а потом буква за буквой исправлять все расхождения. Нечто подобное около 600 раз повторяется при рождении каждого мальчика. «Складывание» также позволяет «игрекам» компенсировать недостаток половой хромосомы-партнера и «рекомбинировать» с самими собой, заменяя гены на протяженности одного участка генами из другой точки.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Сэм Кин читать все книги автора по порядку

Сэм Кин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде отзывы


Отзывы читателей о книге Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде, автор: Сэм Кин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x