Сергей Савельев - Происхождение мозга
- Название:Происхождение мозга
- Автор:
- Жанр:
- Издательство:Веди
- Год:2005
- ISBN:5-94624-025-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Савельев - Происхождение мозга краткое содержание
Происхождение мозга - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вполне понятно, что относительно простые движения лягушки принципиально отличаются от весьма совершенной локомоции геккона. Двукратная разница в размерах спинного мозга только подтверждает глубину различий в системе управления движениями. Если сравнить «индекс цефализации» у этих видов, то он окажется одинаковым, что уже крайне сомнительно. При сравнении аналогичных индексов спинного мозга и применении излюбленного отношения головной мозг/ спинной мозг «бедный» геккон-токо окажется церебральным изгоем даже среди амфибий. Из этого примера вытекает очевидный вывод о неприемлемости использования количественных «индексов цефализации», которые являются непременным атрибутом любых нейробиологических теорий эволюции. Тем не менее в процессе эволюции происходило относительное увеличение размеров головного мозга, что видно из соотношения головной мозг/спинной мозг, которое представлено в табл. 4 и на рис. I-7. Вполне понятно, что табл. 4 показывает только общую грубую тенденцию и не является безусловной закономерностью или поводом для создания теорий.
В-третьих, увеличился и сам головной мозг. Его рост был вызван увеличением мозгового представительства анализаторов различных типов. В первую очередь это были моторные, сенсомоторные, зрительные, слуховые и обонятельные центры. Дальнейшее развитие получила система связей между различными отделами мозга. Они стали основой для быстрого сравнения активностей специализированных анализаторов. Параллельно развились внутренний рецепторный комплекс и сложный эффекторный аппарат. Синхронизированное управление дистантными рецепторами, сложной мускулатурой и внутренними органами невозможно без ассоциативных центров. Они возникали в процессе эволюции неоднократно и на базе различных отделов головного мозга.
С появлением теплокровности требования к нервной системе стали возрастать. Любое повышение метаболизма приводит к увеличению потребления пищи и соответственно к её активному поиску. Совершенствование приёмов добывания пищи и постоянная экономия энергии — актуальные условия выживания животного с высоким метаболизмом. Для этого необходим мозг с развитой памятью и механизмами принятия быстрых и адекватных решений.
Таблица 4. Отношение массы головного мозга к массе спинного мозга
Вид | Головной мозг/ спинной мозг |
---|---|
Пятнистая саламандра (хвостатые амфибии) | 0,9 |
Травяная лягушка (бесхвостые амфибии) | 1 |
Бык (млекопитающие) | 1,5 |
Карп (костные рыбы) | 2 |
Петух (птицы) | 2 |
Кролик (млекопитающие) | 2 |
Броненосец (млекопитающие) | 2,8 |
Еж (млекопитающие) | 4 |
Кошка (млекопитающие) | 4 |
Летучая мышь (млекопитающие) | 6 |
Макака (млекопитающие) | 8 |
Дельфин (млекопитающие) | 18-23 |
Человек (млекопитающие) | 26 |
Активное регулируется более активным. Мозг должен работать с заметным опережением складывающейся ситуации, от этого зависят выживание и успех конкретного вида. Однако повышение метаболизма мозга приводит к неизбежному возрастанию затрат на его содержание. Возникает замкнутый круг: теплокровность требует усиления обмена, которое может быть достигнуто ещё большим повышением метаболизма нервной системы. Иначе говоря, успех теплокровных напрямую зависит от эффективности работы нервной системы. В реальной ситуации эта связь не столь прямолинейна, но общая тенденция сохраняется практически всегда.
Для теплокровных животных размер тела становится критичным. Небольшие животные вынуждены постоянно решать основную, но не единственную задачу — искать пищу. Мелкие насекомоядные съедают ежедневно огромное количество пищи. Бурозубка ежедневно потребляет пищи в несколько раз больше массы собственного тела. В похожей ситуации находятся мелкие летучие мыши и птицы. У многих небольших животных возникли механизмы защиты организма от перерасхода энергии — торпидность. В этом состоянии колибри снижают метаболизм, частоту дыхания и температуру тела. На несколько часов животное впадает в своеобразную спячку, которая нужна для экономии энергии. Иначе говоря, мелкие теплокровные могут находиться в двух основных состояниях: гиперактивности либо спячки. Промежуточное состояние малоэффективно, поскольку энергетические расходы не компенсируются поступающей пищей. Даже в случае её избытка промежуточное состояние достигает только долей процента основных форм поведения.
Крупные теплокровные справляются с этой проблемой различными способами. Всем известна длительная зимняя псевдоспячка медведей, которая позволяет не расходовать энергию большую часть неблагоприятного периода. В отношении экономии энергии ещё более демонстративно поведение кошачьих. Львы, гепарды, тигры и пантеры основное время проводят в полудрёме, как и домашние кошки. Подсчитано, что кошачьи около 80 % времени неактивны, а 20 % тратят на поиск добычи, размножение и выяснение внутривидовых отношений. В физиологии крупных млекопитающих торпидность вообще невозможна, а спячка не означает почти полной остановки жизненных процессов, как у небольших млекопитающих, амфибий и рептилий. Пассивность крупных животных несколько иная. Бездеятельность, связанная с экономным расходованием энергии, имеет жёсткий функциональный характер, но она воспринимается сторонними наблюдателями как «отдых», «развлечение» или даже «лень». У млекопитающих меняется соотношение массы нервной системы и тела. Несмотря на сложную кинематику движения, спинной мозг составляет скромную долю всей нервной системы (см. табл. 4). Зато размеры головного мозга и периферической нервной системы существенно возрастают.
Мозг таких небольших насекомоядных, как американский крот-скалёпус (Scalopus aquaticus) или короткохвостая бурозубка (Blarina brevicauda), имеет массу 1/34 и 1/50 массы всего тела. В этих же пределах колеблется отношение масса мозга/масса тела у луговой полёвки (Arvicola argestis) — 1/47, гудзонской белки (Sciurus hudsonicus) — 1/36, обычной домовой мыши (Mus musculus) — 1/50 и у мыши Вагнера (Mus wahner!) 1/45. Спинной мозг у этих животных обычно составляет 1/4-1/6 массы мозга. Периферическая нервная система мелких млекопитающих, как уже отмечалось, может составить примерно 2/3 массы головного и спинного мозга. Это позволяет довольно приблизительно определить реальные общие размеры нервной системы у грызунов и насекомоядных. По-видимому, их нервная система составляет 1/17-1/25 массы всего тела. Это означает, что она потребляет очень большую часть всей энергии организма.
У более крупных млекопитающих отношение масса нервной системы/масса тела увеличивается в пользу тела. Для рукокрылых вампиров (Desmodus rotundus) оно составляет 1/40, ленивцев (Choloepus hofmannl) — 1/100, оленя (Cervus elaphus) — 1/150, белого медведя (Thalarctos marinus) — 1/250, льва (Panthera leo) — 1/300, тапира (Tapirus americanus) — 1/500 и гиппопотама (Hippopotamus amphibius) — 1/1500. При увеличении массы тела доля нервной системы как отдельного органа существенно падает. Вместе с уменьшением относительных размеров нервной системы снижается и доля потребляемой ею энергии. В связи с этим крупное животное с большим мозгом находится в более благоприятном положении, чем небольшое. Для маленьких «головастиков» неизбежны переход на высококалорийную пищу и повышенный уровень метаболизма. Энергетические затраты на содержание мозга складываются из потребления кислорода, питательных веществ и поддержания водно-солевого баланса.
Читать дальшеИнтервал:
Закладка: