Юрий Чирков - Гомо Сапиенс. Человек разумный
- Название:Гомо Сапиенс. Человек разумный
- Автор:
- Жанр:
- Издательство:Редакция Eksmo Digital (RED)
- Год:2021
- Город:М.
- ISBN:978-5-04-160451-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Чирков - Гомо Сапиенс. Человек разумный краткое содержание
Создав искусственный интеллект и претворив в жизнь самые смелые машинные проекты, человек и не заметил, как превратился в настоящего раба пультов, кнопок и механизмов. Так куда заведет нас эта опасная, извилистая и полная загадок тропа?
Комментарий Редакции: Нам приоткрыта чарующая завеса поразительной тайны: так откуда же, все-таки, взялся человек? Вопрос – уже близкий к риторическому и, скорее всего, вечный. Но куда более интересна и другая история: кто победит в масштабном состязании между человеческим разумом и искусственным интеллектом? Будучи доктором химических наук, автор предложил блестящие доводы в пользу одной из сторон. Но… какой?
Гомо Сапиенс. Человек разумный - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Увы, эта и многие последующие попытки создать искусственный глаз окончились неудачей. Машина (она оказалась «глазами без ума») тогда так и не научилась распознавать изображения независимо от их масштаба, возможного сдвига и прочих преобразований, которые, однако, вовсе не мешают человеку узнавать те или иные предметы.
Горький это был результат. Раздались возгласы: «Ничего и не должно было получиться!», «Мозг человека совершенствовался миллиарды лет. Обучить за такое же время машину невозможно. Поэтому попытки создать видящие (как и думающие) ЭВМ – затея нереальная!»
Если в чем-то эти научные перестраховщики и были правы, так это в том, что проблема распознавания стара как мир. Во всяком случае, она намного старше заселившего планету человечества. И совсем неудивительно, что уже в древних (VII век до новой эры) индийских религиозно-философских трактатах «Упанишады» («Тайттирия упанишад») можно прочесть такие строки: «От распознавания рождаются эти существа, распознаванием живут рожденные, в распознавание они входят, умирая…».
Да, проблема распознавания сопутствует человеку от самой его колыбели. Но отсюда все же не следует, что ее нельзя решить техническими средствами. Трудность тут только в том, как вложить в компьютер те знания, которые так долго набирал, копил человек в ходе своей долгой эволюции.
14.7. Как отличить собаку от кошки
Жизнь торопила. В 60-е и 70-е годы XX века многие, не дожидаясь появления специальных устройств и строгой математической теории распознавания, вынуждены были заниматься этой проблемой. Инженеры и психологи, физики и врачи, математики и физиологи сталкивались с острейшей необходимостью понять или промоделировать такие функции мозга, как способность «находить сходство», «обобщать». «создавать абстрактные понятия», «действовать на основе интуиции».
И появилось великое – многие сотни – множество эвристических распознающих алгоритмов (под алгоритмом надо понимать всякое точное предписание каких-то действий: сложение столбиком, например, извлечение квадратного корня из числа и так далее), способов направленной обработки изображений. То были счастливые догадки человеческого ума, результаты долгих математических экспериментов. Совершенно необоснованные, даже кажущиеся порой подозрительными, эти алгоритмы оказывались иногда на удивление полезными и точными.
Собственно, это были первые попытки применения точных методов (математических или около математических) для решения задач в тех областях, где построение точных моделей или затруднено, или вообще невозможно по нескольким причинам: либо соответствующая область знания плохо формализована, не допускает построения сугубо формальных математических моделей, либо информация, с которой приходится иметь дело, столь разнообразна и разнородна, что описание ее какими-то более или менее простыми системами уравнений затруднено.
Исследователи хотели формализовать тот интуитивный процесс, который у людей происходит при обучении. Скажем, когда обучают врача, ему демонстрируют последовательно некоторое количество больных людей, описывают синдромы, симптомы – и постепенно возникает некий «образ болезни». Если по прошествии некоторого времени обучаемому предъявляется новый неизвестный ему пациент, то новоиспеченный врач более или менее точно устанавливает диагноз.
Медицинская диагностика, геологическое прогнозирование, оценка экономических и политических ситуаций, профотбор, автоматизация обработки экспериментальных данных, распознавание неисправностей машин и механизмов, интерпретация сигналов при радио- и гидролокации, предугадывание свойств синтезируемых химических соединений – всюду требовались эффективные алгоритмы распознавания. Их созданием, часто на свой страх и риск, занимались большие коллективы исследователей. Немало лет требовала такая работа (она обычно заканчивалась публикацией серии статей, иногда даже монографией). Привлекался большой творческий потенциал (ведущие математики, эксперты), тратились немалые средства.
К сожалению, выпестованные с таким трудом алгоритмы распознавания не только не работали в соседних областях науки или техники, но чаще всего даже в той области, для которой они были созданы, вели себя на удивление «робко». Скажем, алгоритм поиска нефти, удачно подобранный для Западной Сибири, давал осечку в Татарстане и бастовал на берегах Каспия. А алгоритм технической диагностики, разработанный для легковых автомашин, не признавал трактора, игнорировал мотоциклы.
В эти годы поисков один известный советский кибернетик на научном семинаре как-то посетовал: «Я бы все на свете отдал, если кто-то мог объяснить мне, как научить машину отличать собаку от кошки. Вроде бы все одинаково: четыре лапы, хвост, два уха…»
Необходимо было навести математический порядок в этой неразберихе. Задача состояла в том, чтобы, признав как реальность существование и пользу для практики уже созданных алгоритмов распознавания, изучить с помощью строгих математических методов само множество таких процедур и попытаться построить такие обобщающие алгоритмы, которые бы успешно работали в любой области. И почти со стопроцентной вероятностью.
Другими словами, тут требовалась совсем иная математика, математика нового типа.
14.8. Науки описательные и точные
Бывший в свое время директором Вычислительного центра Академии наук СССР Герой Социалистического Труда академик Анатолий Алексеевич Дородницын (1910–1994) увлекался необычным хобби. Он на досуге классифицировал ракушки тропических моллюсков (им была собрана большая их коллекция). Академик пытался по узорам удивительной красоты и сложности, которые украшали раковины, установить род, класс того или иного беспозвоночного, которому эта ракушка-дом принадлежала.
Проблема распознавания образов давно интересовала Дородницына. В сентябре 1971 года, когда в Москве на симпозиуме «Практические применения методов распознавания образов» собрались исследователи из Болгарии, Венгрии, ГДР, СССР и Чехословакии, академик сделал очень интересный доклад «Информатика и описательные науки».
Дородницын разделил тогда все науки на точные и описательные. К точным наукам он отнес математику и науки физического цикла (механику, термодинамику, электродинамику, квантовую механику), к описательным – все остальные.
Какая наука точна? Та, что обладает средствами предвидеть с достаточной практической точностью развитие процессов, изучаемых данной наукой. Если этого нет, если исследователи в основном вынуждены строить догадки о том, как пойдет процесс, значит, эта наука все еще остается описательной. Таковы биология, медицина, геология, социология.
Читать дальшеИнтервал:
Закладка: