Анатолий Молчанов - Население Земли как растущая иерархическая сеть
- Название:Население Земли как растущая иерархическая сеть
- Автор:
- Жанр:
- Издательство:Array SelfPub.ru
- Год:2019
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Анатолий Молчанов - Население Земли как растущая иерархическая сеть краткое содержание
Население Земли как растущая иерархическая сеть - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Всего получается 156 циклов. Из них пустых 156 – 14 = 142. Соответственно, за каждый из оставшихся 14 циклов собирается один клаттер. Заходить на второй виток ни разу не приходилось. Сеть проходит четыре гармонические стадии роста: в момент старта, а также на 93-м, 134-м и 156-м цикле с числом клаттеров 2, 4, 8 и 16, соответственно. Переходим ко второму этапу.

Рис. 2. Алгоритм роста сети 256 от 16-ти до 256-ти клаттеров.
На этом этапе пройдено 15 циклов. Его начало сопровождается бурным ростом числа клаттеров. Это связано с тем, что на втором этапе за цикл с нуля собирается один или большее число клаттеров. Для реализации прохода через гармонические сети необходимо было скорректировать рост, но только в четырех точках «близких» к гармоническим сетям.
Каждая коррекция представляла собой малое возмущение в один клаттер и была проведена на стадиях роста с числом клаттеров 20, 31, 65 и 127: (127 + 1)*2 = 256, (31 + 1)*8 = 256, (65-1)*4 = 256. Существует не одна такая четверка, но результат, функция U(C), – остается тем же.
Растущая сеть проходит через гармонические стадии с размером: 16, 32, 64, 128, 256 клаттеров. На последнем цикле число клаттеров удваивается: U(14) = 128, U(15) = 256. Это справедливо для сетей любого ранга. Отметим также, что результаты работы алгоритма практически полностью совпадают со значениями следующей функции:

Рис. 3. Теоретическая гипербола сети 256.
Назовем функцию U1(i) теоретической гиперболой сети 256.Этап заканчивается сборкой клаттера 65536. И, наконец, третий этап роста сети 256 – репликация. Здесь сеть собирает свою копию и прокладывает связь между ней и оригиналом. Сеть 65536 может стартовать.
Подведем итоги для сети 256: всего имеется 156 + 15 = 171 цикл (без учета репликации) и восемь гармонических стадий роста с числом клаттеров 2, 4, 8, 16, 32, 64, 128, 256. Последняя гармоническая сеть с числом клаттеров 256 является также совершенной.
Рост сети 65536
Продолжая процесс, переходим к сети 65536. Первый этап – рост от 2-х клаттеров до 256-ти.

Рис. 1. Рост сети 65536 от 2-х клаттеров до 256-ти.
Всего сеть проходит 42142 цикла. Из них пустых 42142 – 254 = 41888. В 254 циклах собиралось по одному клаттеру. На второй виток, в соответствии с алгоритмом, заходить не приходилось.
Имеется восемь гармонических стадий роста: на старте и на 23666-м, 33543-м, 38046-м, 40197-м, 41261-м, 41812-м, 42142-м циклах с числом 2, 4, 8, 16, 32, 64, 128 и 256 клаттеров, соответственно.
Второй этап – рост от 256-ти клаттеров до 65536-ти.

Рис. 2. Рост сети 65536 от 256-ти клаттеров до 65536-ти.
Коррекция роста проведена в 21 точке. Все значения размеров сети, для которых проводилась коррекция М <���− М+1, являются (или «почти» являются) делителями числа 65536, если к ним добавить единицу; например, 65536/(13106+1) = 5,000076. Вот частные, которые получаются в результате:
3, 4, 5, 8, 19, 32, 56, 67, 94, 122, 212, 214, 217, 222, 225, 229, 234, 240.
Такие коррекции одни из многих возможных, подобных им, но все они дают практически один и тот же результат, если придерживаться правила: при небольшом отклонении от гиперболической сети добавить в цикл один клаттер, т. е. держать курс на ближайшую гиперболическую сеть. Гиперболическая сеть – это сеть, размер которой равен ce(65536/N), где N > 256 – натуральное число.
Причем при увеличении М на единицу процесс устойчив и через некоторое количество циклов «садится» на гиперболу. При уменьшении М на единицу наблюдается неустойчивость, и процесс роста необратимо уходит от гармонических сетей.
Понадобилась одна коррекция в сторону уменьшения размера сети М: 328 <���− 327 (65536/328 = 199.8), если ее не провести процесс срывается с гиперболы (последние три цикла 25501, 43735, 65537). Результаты работы алгоритма «почти точно» ложатся на теоретическую гиперболу сети 65536:

Рис. 3. Теоретическая гипербола сети 65536.
Гиперболический рост сети на первом и втором этапе представляет собой ускоряющийся неустойчивый процесс, требующий от управляющей системы двадцать пять коррекций. Неустойчивость роста понятна и из того факта, что уравнение Капицы, как асимптотический закон роста сети, устойчивых решений не имеет.
Составим таблицу зависимости числа клаттеров растущей сети от номера цикла для алгоритма и теоретической гиперболы. Значения почти совпадают: максимальное отличие в три клаттера. В таблице выделены гармонические размеры сети.

Таблица 1. Зависимость числа клаттеров растущей сети от номера цикла для алгоритма и теоретической гиперболы.
Третий этап – операция репликации. Собираются копия сети, прокладывается связь между ней и оригиналом. Сеть 4 294 967 296 может стартовать.
Всего имеется 42142 + 255 = 42397 циклов (без учета репликации) и 16 гармонических стадий роста сети 65536. Сведем все данные в таблицы:

Таблица 2А. Подсчет номера цикла и числа клаттеров для гармонических сетей с размером, принадлежащем интервалу [257, 65536].

Таблица 2В. Зависимость числа клаттеров от номера цикла для гармонических размеров сети 65536.
Подсчет числа циклов роста сети любого ранга от двух клаттеров до совершенной
Для того, чтобы найти полное количество циклов, которое проходит сеть любого ранга в процессе своей эволюции, нужно сложить число этих циклов на трех этапах ее роста (считаем, что сеть любого ранга, став совершенной, создает единственную свою копию, на что уходит ровно два цикла [8]и рост сети следующего ранга всегда начинается с двух клаттеров.)
На втором и третьем этапе число циклов вычисляется с полной определенностью: корень квадратный из веса клаттера минус единица плюс два. Минус единица, т. к. алгоритм восьми шагов прекращает свою работу за шаг до сингулярности. И далее два цикла на переход. Получаем корень квадратный из веса клаттера плюс единица.
Читать дальшеИнтервал:
Закладка: