Анатолий Молчанов - Население Земли как растущая иерархическая сеть II

Тут можно читать онлайн Анатолий Молчанов - Население Земли как растущая иерархическая сеть II - бесплатно ознакомительный отрывок. Жанр: Биология, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Население Земли как растущая иерархическая сеть II
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2021
  • ISBN:
    нет данных
  • Рейтинг:
    4.25/5. Голосов: 41
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Анатолий Молчанов - Население Земли как растущая иерархическая сеть II краткое содержание

Население Земли как растущая иерархическая сеть II - описание и краткое содержание, автор Анатолий Молчанов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Гиперболический рост населения Земли, феномен неолита, ускорение исторического времени Капицы, сингулярная точка эволюции, циклы Кондратьева, парадокс Ферми, критический анализ теорий, претендующих на объяснение этих явлений, – вот главные темы, затронутые в этой книге. Представлена сетевая теория эволюции Homo sapiens, способная все объяснить; и она фальсифицируема, т.к. позволяет вычислить возраст Вселенной с точностью до пяти значащих цифр через период когерентной космологической осцилляции (Рo = 160.0101 ± 0.0001 минут): TUniverse = 2^46(π²/6 − 1)(1 − 1/2^13)Рo = 13805.0 ± 0.2 млн лет. Издание второе, исправленное, переработанное и дополненное.

Население Земли как растущая иерархическая сеть II - читать онлайн бесплатно ознакомительный отрывок

Население Земли как растущая иерархическая сеть II - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Анатолий Молчанов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Приведенные выдержки воспринимаются с трудом, но даже если не вникать в смысл этой физикалистской абракадабры можно все-таки понять, что Панов определяет сингулярность Дьяконова как предельную точку последовательности дат своих планетарных революций. Такая инициатива представляется выражением самонадеянности, некомпетентности и бестактности ее автора. Здесь важно не только то, что совмещая биосферную и историческую сингулярность, Панов приходит к абсурдным, апокалиптическим результатам.

Даже и сам термин «сингулярность» Панов понимает неправильно. Действительно, для того, чтобы можно было говорить о сингулярной точке истории, эволюции необходимо, чтобы существовал количественный показатель исторического или эволюционного развития, который бы неограниченно возрастал за конечный промежуток времени. Поскольку подобный показатель в построениях Панова отсутствует [18], то ни о какой вертикали Снукса – Панова, ни о каком режиме с обострением в первой четверти XXI века – говорить не приходится.

Так, например, если считать, что ускорение исторического процесса было не гиперболическим, а экспоненциальным, то «переход к вертикали» занимал бы бесконечно долгое время. И речь в таком случае шла бы не о точке сингулярности, а о некотором конечном (в идеальном случае бесконечном) интервале времени – эпохе перемен.

Говорить об исторической сингулярности или сингулярности Дьяконова стало возможным лишь после работ С.П. Капицы, который первым обоснованно связал эволюцию человека и историю человечества с растущей численностью населения Земли. Согласно принципу демографического императива Капицы именно численность населения Земли в эпоху гиперболического роста и есть та переменная, которая может служить естественной мерой эволюции и развития человечества как системы.

Поскольку в формуле Фёрстера в двадцатых годах XXI столетия ее значение устремляется к бесконечности, понятие «сингулярность Дьяконова» обретает смысл. В таком случае историческая сингулярность или сингулярность Дьяконова может быть также названа «сингулярностью Дьяконова – Капицы».

* * *

Эта глава написана с единственной целью: противостоять интерпретации понятия «сингулярность Дьяконова» в понимании Панова и дать ему единственно правильное, на наш взгляд, определение. Весь представленный ниже материал можно разделить на две части.

В первой части, сингулярность Дьяконова – Капицы будет определена нами исходя из развиваемой здесь гипотезы о растущей сети, сопровождающей эволюционный и исторический процесс. Такое определение, разумеется, не может считаться бесспорным, поскольку опирается на гипотезу.

Так как ошибка здесь недопустима по этическим соображениям, ведь эта историческая сингулярность ассоциируется с именами известного историка и выдающегося популяризатора науки, – нами будет еще раз дано ее определение, но уже без всяких ссылок на нашу гипотезу, а на основании лишь известных исторических фактов. Это будет сделано во второй части нашей работы.

Сингулярность Дьяконова – Капицы как момент завершения первого цикла демографического перехода

Прежде всего, покажем, что сингулярность Дьяконова – Капицы, согласно предлагаемой здесь гипотезе, приходится на 2022 год с погрешностью примерно в два, три года и в полном соответствии с демографическими данными. Запишем формулу теоретической гиперболы:

Рис 1 Зависимость числа носителей сети в клаттерах от неолита до второй - фото 72

Рис. 1. Зависимость числа носителей сети в клаттерах от неолита до второй половины ХХ века.

Здесь N(t) – численность носителей в клаттерах (один клаттер содержит 65536 носителей), а t – время в циклах τ (τ = 40 лет) от начала неолита. Моменты времени t = 0, 128, 192, 224, 240, 248, 252, 254, 255 – даты, когда сеть достигает гармонической стадии своего роста. (Продолжительность восьми исторических периодов, соответственно: 128τ, 64τ, 32τ, 16τ, 8τ, 4τ, 2τ, т.) Момент t = 256 – точка сингулярности или время окончания первого цикла демографического перехода, если отсчет времени вести от начала неолита.

Если отсчет вести от начала новой эры, точку сингулярности получаем, прибавляя к дате достижения сетью совершенства (т. е. к 1982 году) время цикла сети: 1982 + 40 = 2022. Постоянная Фёрстера для теоретической гиперболы равна: С = kK 2τ = 1.1·65536 2·40= 1.89·10 11лет. Если к тому же время измерять в годах, а численность в миллиардах человек, то формула (1) приобретает вид:

Рис 2 Зависимость численности населения Земли от неолита до наших дней - фото 73

Рис. 2. Зависимость численности населения Земли от неолита до наших дней согласно теории.

Но именно так и выглядит эмпирическая гипербола, лучше всего описывающая рост населения мира за последние сорок тысяч лет:

Рис 3 Зависимость численности населения Земли от палеолита до наших дней по - фото 74

Рис. 3. Зависимость численности населения Земли от палеолита до наших дней по данным Мак-Эведи, Джоунса и Кремера.

Эта гиперболическая зависимость, из семейства гипербол Фёрстера, лучше всего задает рост численности населения мира от 40.000 г. до н. э. до 1970 г. по данным Мак-Эведи, Джоунса (1978) и Кремера (1993) для периода от 40.000 г. до н. э. до 1950 г. н. э. [13]

Зависимость (4) можно получить и из формулы Фёрстера (см. главу «Константы Капицы»), если подобрать гиперболу с целочисленным показателем n = -1, находящуюся на наименьшем «расстоянии» от гиперболы Фёрстера с n = -0.99 и C = 179 млрд. У этой гиперболы C = 188 млрд и t 0= 2022, что практически не отличается от данных Мак-Эведи, Джоунса и Кремера.

Теоретическая гипербола (3), а значит и (1), практически тождественна гиперболе (4). Причем эта гиперболическая зависимость описывает с хорошей точностью рост населения мира вплоть до конца семидесятых, начала восьмидесятых годов прошлого столетия. Это вытекает из того простого факта, что теоретическая гипербола по определению должна проходить через точку (1982; 65536 2); учитывая то, что сеть достигает совершенства в 1982 году, а зомби-коэффициент k = 1.1, получаем: 1,89·10 11/[(2022–1982)·1.1] ≈ 65536 2. Следовательно, 2022 год – дата, отстоящая от момента завершения роста сети на время цикла сети – действительно, точка сингулярности.

Построим в одних координатных осях гиперболу (4) и график интерполяции данных по численности населения мира в интервале: 1960–1990 гг. по данным International Data Base (IDB) с шагом в один год.

Рис 4 Гипербола 4 и интерполяция демографических данных за 19601990 гг - фото 75

Рис. 4. Гипербола (4) и интерполяция демографических данных за 1960–1990 гг.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Анатолий Молчанов читать все книги автора по порядку

Анатолий Молчанов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Население Земли как растущая иерархическая сеть II отзывы


Отзывы читателей о книге Население Земли как растущая иерархическая сеть II, автор: Анатолий Молчанов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
post
2 декабря 2024 в 19:25
книга дающая основы понимания мироустройства.
x