Татьяна Жданова - Сотворенная природа глазами биологов
- Название:Сотворенная природа глазами биологов
- Автор:
- Жанр:
- Издательство:Литагент «Символик»0e09ac11-b038-11e3-b4ee-0025905a069a
- Год:2012
- Город:Москва
- ISBN:978-5-905821-16-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Татьяна Жданова - Сотворенная природа глазами биологов краткое содержание
Книга-пособие с большим количеством ярких и убедительных фактов об одном из источников Богопознания – мире живого. Эти факты, собранные по крупицам с помощью биологов всего мира, демонстрируют совершенство сотворенной природы как результат Божественного Промысла.
Пособие адресовано широкому кругу читателей, в том числе учащимся старших классов, студентам, преподавателям.
Допущено Отделом религиозного образования и катехизации Русской Православной Церкви
Сотворенная природа глазами биологов - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Собравшиеся вместе миксамебы готовы к сборке нового организма. И в этом им помогают структурные и молекулярные приспособления, позволяющие клеткам узнавать друг друга и ассоциироваться. Миксамебы постепенно образуют многоклеточный плазмодий, который становится червеобразным слизевиком. Он превращается в маленький грибок с округлой головкой, где находятся споры. Головка гриба стоит на тонкой ножке, а сам он не более двух миллиметров.
Интересно, что этот многоклеточный организм собирается из отдельных клеток-амеб буквально на глазах. Причем благодаря генетической информации процесс самосборки исключает хаотичность при их взаимодействии. Идут строго упорядоченные и отлаженные механизмы формирования отдельных органов и всего организма в целом.
Новое живое существо имеет уже свои жизненные задачи – пережить период с недостатком пищи и произвести на свет споры. При благоприятных условиях во влажной среде из спор появятся молодые миксамебы. И таким образом замкнется жизненный цикл этих маленьких, премудро созданных животных.
Восстановление целого организма из его части.В условиях предыдущего эксперимента с миксамебами ученые решили сократить количество сливающихся клеток до половины. И оказалось, что из этой половины миксамеб получился той же формы грибок, но вдвое меньшего размера. Когда оставили четвертую часть клеток, они вновь собрались в совсем маленький грибок со всеми присущими ему формами.
Это говорит о том, что каждая клетка несет информацию о форме тела грибка данного вида, которую нужно совместно сложить.
Правда, существует предел, когда клеток для построения миксо-мицета не хватает.
Не менее интересны опыты, проведенные с плоскими червями планариями. В эксперименте планарию разрезали на множество кусочков произвольных размеров и оставили их в покое. И оказалось, что клетки в каждом кусочке ткани планарий стали изменять свою специализацию и перестраиваться в целое животное.
Прошло три недели, и по дну сосуда поползли едва заметные глазу планарии-крошки разных размеров. У них, к радости сердобольных исследователей, была даже видна головка с глазами и расставленными в стороны обонятельными «ушками». Эти животные продемонстрировали, что способны воспроизвести свой облик даже из 1/300 части тела планарий.
В этом эксперименте открылся еще один немаловажный факт: каждое новое существо восстановилось из разного количества клеток в зависимости от размера отрезанного кусочка тела планарий. Но все организмы получились как по одному «чертежу». Значит, во всяком кусочке ткани появлялся организующий центр, который, используя клеточную информацию о форме целого организма, управлял его сборкой из существующего количества клеток.

Подобные опыты ставились и с одноклеточными существами – с крупными, в 2 миллиметра длиной, инфузориями спиростомами. Инфузорию разрезали микроскальпелем на 60 частей, и по прошествии определенного времени каждый кусочек восстанавливался в целый организм.
Но как это возможно? – спросите вы. Ведь вся генетическая информация об этом одноклеточном организме как раз и заключена в его единственной клетке. И 1/60 часть инфузории должна была содержать только малую часть данных о будущем живом существе. Но это факт, и он еще раз показывает нам сложность и совершенство сотворенного микромира.
А вот еще эксперимент, в котором участвует инфузория трубач размером около 0,5 мм. Если ее разрезать на части, то в течение нескольких часов полученные кусочки округлятся и начнут быстро превращаться в трубачей меньших размеров.
Здесь также происходит восстановление одноклеточного существа из его малой части. Вначале идет сложнейший процесс изменения специализации различных участков бывшего тела трубача. Каждая часть в пространстве даст свою форму. Например, в том кусочке, где было скопление ресничек, происходит сужение конца трубача, а в другом – наоборот.
Многочисленные исследования и выдвинутые теории так и не смогли ответить на вопросы – какие приборы следят за формой восстанавливающейся клетки, откуда подается команда, как вести себя той или иной части клетки и т. п.
Координация движений.Хотя простейшие, как явствует из классификации, принадлежат к наиболее примитивно устроенным живым организмам, однако это не всегда соответствует действительности. Достаточно посмотреть на грациозные плавательные движения инфузорий, которые осуществляются благодаря координированным биениям ресничек.
Организованное движение подразумевает существование у этих организмов системы, которая служит аналогом нервной системы у высших животных. Это относится ко всем простейшим с координируемыми движениями. Однако нервной системы как таковой у них нет. Вместо нее имеются нервоподобные волокна, нейрофибриллы, идущие от контролирующего центра к усикам.
Так, клетки эуплотеса имеют очень высокую степень координации движения для такого, казалось бы, примитивного простейшего. То же самое можно сказать и в отношении обычных инфузорий. Экспериментально доказано, что нейроподобные волокна у них функционируют так же, как и нервы. Специальным инструментом, применяемым в клеточной хирургии, на клетке были сделаны надрезы между контролирующим центром и усиками. После этого клетки утрачивали способность к координированному движению. Аналогичные надрезы в других местах клетки не влияли на координацию движения, если целостность нейро-фибрилл не нарушалась.
Биохимический парадокс.Подобно множеству других одноклеточных форм, тетрахимена передвигается с помощью ресничек и питается более мелкими организмами, главным образом бактериями. Тщательные исследования показали, что для жизнедеятельности тетрахимены необходимы те же аминокислоты, минеральные соли, витамины и сахара, что и для высокоразвитого животного.
Однако это микроскопическое живое творение не может синтезировать необходимые химические соединения. Поэтому тут мы имеем дело с развитым одноклеточным гетеротрофным (от греч. heteros – другой) организмом, который с точки зрения биохимии почти так же сложен, как и животное, состоящее из триллионов клеток.
Так ли уж проста тетрахимена как форма жизни?
«Разборчивая» туфелька.Эти одноклеточные организмы тоже не так примитивны, как можно было бы думать. Так, парамеция туфелька глотает далеко не все, что попадается ей на пути. У туфельки хорошо развит вкус, и то, что ей не нравится, во временные «желудки» к ней не попадает. Парамеции вылавливают из воды бактерий, лакомятся растертым куриным желтком и почему-то охотно поглощают краситель кармин, в отличие от крупинок серы и микроскопических кристалликов солей.
Читать дальшеИнтервал:
Закладка: