Мик О'Хэйр - Почему у пингвинов не мерзнут лапы? И еще 114 вопросов, которые поставят в тупик любого ученого
- Название:Почему у пингвинов не мерзнут лапы? И еще 114 вопросов, которые поставят в тупик любого ученого
- Автор:
- Жанр:
- Издательство:Литагент «Добрая книга»d7e9a099-70ba-11e4-a4b7-0025905a0812
- Год:2010
- Город:Москва
- ISBN:978-5-98124-305-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Мик О'Хэйр - Почему у пингвинов не мерзнут лапы? И еще 114 вопросов, которые поставят в тупик любого ученого краткое содержание
Сборник занимательных фактов из разных областей: естествознания, физики, химии, медицины, биологии. Увлекательное чтение и отличный подарок для остроумного и любознательного читателя.
Книга открывает новую серию изданий о тайнах, загадках и парадоксах нашей жизни.
В сентябре 2009 года в серии выходят книги:«Почему медведи не бегают под горку и еще 200 занимательных фактов, требующих объяснения», «Смерть можно вылечить и еще 99 невероятных медицинских гипотез о нас и о нашем здоровье», «Как вытряхнуть кетчуп из бутылки и еще 79 невероятных экспериментов в домашних условиях».
Знаете ли вы:
• Выживут ли белые медведи, если переселить их в Антарктиду?
• Почему птицы во сне никогда не падают с веток и насестов?
• Опровергает ли полет шмеля законы физики?
• Почему в ясный день небо голубое?
• Почему вода в море соленая?
• Как смягчить посадку в падающем лифте?
Эта книга – отличный подарок для любознательного и остроумного читателя. Вас ждет множество захватывающих и неожиданных открытий: от разоблачения некоторых мифов современного естествознания до ответов на вопросы, которые ставили в тупик ученых, школьных учителей и преподавателей естественных наук.
Почему у пингвинов не мерзнут лапы? И еще 114 вопросов, которые поставят в тупик любого ученого - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Джон Эштон
Монмут, Гуэнт, Великобритания
Да, читатели из Диведа и Гуэнта, вы действительно кое-что упустили, хотя ваша деятельность и честность достойны похвал. Итак, сначала… – Ред.
Чтобы увидеть этот эффект, свечу следует поместить в какой-нибудь сосуд, иначе пламя оттянется назад. Итак, свечу – в банку, банку – на край вращающегося столика.
Дэвид Мей
Учитель физики,
муниципальный колледж Хинд-Лейз,
Шепшед, Лестершир, Великобритания
Причина, по которой пламя свечи направлено внутрь круга, – слабая центробежная сила, которую создает вращающийся столик.
Дэвид Блейк
Стерлинг, Великобритания
По мере вращения воздуха в банке на центрифуге более плотный воздух выходит с предсказуемыми последствиями. – Ред.
Пламя свечи наклоняется к центру круга по тем же причинам, по которым пламя направлено вверх, а не вниз. Нагретый пламенем воздух не такой плотный, как окружающий, поэтому более плотный воздух выходит из банки, отклоняя пламя свечи внутрь.
Если бы я была придирой, то возразила бы, что движение менее плотного пламени свечи ускоряет та же центростремительная сила. Согласно известному закону Ньютона для одной и той же силы произведение массы и ускорения одинаково. Если же масса уменьшится, ускорение должно возрасти. А школьникам достаточно просто понять, что сила больше действует на плотный воздух.
Сью-Энн Боулинг
Университет Аляски,
Фэрбенкс, Аляска, США
Можно также перейти к системам координат и математике. – Ред.
Понять, почему пламя свечи указывает внутрь круга, гораздо легче, если рассмотреть эту задачу в линейной системе координат. Представим, что вы едете в машине и держите за веревочку шарик с гелием. Вы резко затормозили. Что случилось с шариком? Ремень безопасности врезался вам в тело, а шарик отнесло к заднему сиденью. Все потому, что воздуху в машине присуща инерция, он продолжает двигаться вперед вместе с вами, а шарик стремится в область самого низкого давления и низкой плотности воздуха – в заднюю часть салона.
Подобно этому, пламя свечи обладает «плавучестью», своей формой оно обязано сложному взаимодействию между горячим воском у фитиля и температурой окружающего воздуха. Поэтому пламя тоже уплывает в направлении самого низкого давления – к оси вращения. Закончим аналогию: свеча, как и машина, движется с ускорением по отношению к воздуху, окружающему пламя, поэтому воздух направлен из круга радиально по отношению к свече, а пламя – к центру круга.
Том Тралл
Университет Тасмании, Австралия
В закрытой банке менее плотные газы пламени будут вытесняться к центру вращения под действием центростремительной силы. Можно определить арктангенс угла пламени (a / g) в плоскости с вертикалью (где а – центростремительное ускорение).
Тот же эффект можно продемонстрировать с помощью наполненного гелием шарика в машине. Шарик отклоняется вперед при ускорении, назад – при торможении и вбок – на поворотах. Применима та же формула. Для машины, которая обходит поворот дороги по дуге радиусом 20 метров со скоростью 50 километров в час отклонение должно составить около 44°.
Нил Хенриксон
Ректор высшей школы Джеймса Янга,
Эдинбург, Великобритания
И еще более простая демонстрация того же эффекта. – Ред.
Если поставить спиртовой уровень на вращающийся столик, расположив его как спицу в велосипедном колесе, а затем раскрутить столик, пузырек воздуха быстро придвинется внутрь круга. Более тяжелый спирт отталкивает к центру круга легкий пузырек.
Колин Сиддонс
Брэдфорд, Западный Йоркшир, Великобритания
Мячи с отклонениями
«Я играю в разные игры с мячом и часто вижу эффект Магнуса, который заставляет мяч, вращающийся по часовой стрелке (если смотреть сверху), отклоняться вправо. Если мяч подкрутить в обратном направлении, его полет будет долгим, по плавной траектории. Такие эффекты можно продемонстрировать с помощью кожаных футбольных мячей, мячей для большого и настольного тенниса. Но если попробовать подкрутить пластмассовый футбольный мяч, какие продают на заправках и пляжах, наблюдается совсем другое явление: вращение по часовой стрелке создает отклонение влево, а подкручивание в обратном направлении завершается досадным падением. Эти мячи такие же, как для настольного тенниса, только побольше, на них нет ни впадинок, ни других отметок, почему же они по-другому реагируют на подкручивание?»
Ричард Бриджуотер
Уолсолл, Западный Мидлендс, Великобритания
Этот феномен подробно описывался в статье «Изнанка игры в мяч» (The seamy side of swing bowling), опубликованной на с. 21 журнала New Scientist от 21 августа 1993 года; его удобнее всего объяснять с точки зрения «отделения пограничного слоя».
Когда мяч летит по воздуху, его поверхность покрыта тонким слоем воздуха, который мяч гонит с собой. Далее располагается непотревоженный воздух. Между воздушной пленкой и спокойным воздухом можно выделить тонкий пограничный слой. Перед мячом этот слой двигается медленно. Но, обтекая мяч, он постепенно набирает скорость и оказывает меньше давления (согласно закону Бернулли, который гласит, что, чем быстрее течет жидкость, тем меньшее давление она оказывает).
В определенный момент пограничный слой отделяется от поверхности мяча. Если мяч круглый и не подкрученный, это происходит в один и тот же момент на всей поверхности мяча. Если мяч подкрученный, отделение пограничного слоя происходит асимметрично, поэтому на одной стороне мяча пограничный слой занимает бо́льшую площадь, чем на другой. В итоге с одной стороны от мяча образуется бо́льшая область низкого давления, которая толкает мяч вбок.
При сильном свинге (созданном эффектом Магнуса–Робинса) вращающийся мяч несет с собой очень тонкий слой воздуха. Он смещает точку отделения пограничного слоя к задней части мяча, где вращение происходит в том же направлении, что и в окружающем потоке воздуха, и к передней части бока мяча, который движется против движения воздушного потока. Итогом становится область низкого давления на боку мяча, где продолжается пограничный слой, заставляющий мяч вращаться в этом направлении. Вот почему вращение по часовой стрелке вызывает отклонение мяча вправо. (Еще один способ описания происходящего: сдвиг точки отделения пограничного слоя смещает линии воздушного тока вокруг мяча и за ним в одну сторону, поэтому мяч отклоняется в другую).
Все это означает, что поток в пограничном слое ламинарный, его гладкие слои движутся один по другому, не перемешиваясь. На практике часть потока может быть турбулентной, с перемешиванием слоев воздуха, именно в этом случае может произойти смена направления вращения. Эксперименты показали, что турбулентные потоки держатся у поверхности мяча дольше, чем ламинарные. Поэтому если пограничный слой является турбулентным с одной стороны и ламинарным с другой, давление будет ниже в зоне турбулентности и мяч повернется в эту сторону.
Читать дальшеИнтервал:
Закладка: