Джошуа Ганс - Искусственный интеллект на службе бизнеса
- Название:Искусственный интеллект на службе бизнеса
- Автор:
- Жанр:
- Издательство:Литагент МИФ без БК
- Год:2019
- Город:Москва
- ISBN:978-5-00117-881-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джошуа Ганс - Искусственный интеллект на службе бизнеса краткое содержание
На русском языке публикуется впервые.
Искусственный интеллект на службе бизнеса - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В определенный момент поворота ручки точность прогнозов ИИ достигает порогового значения и меняет бизнес-модель Amazon. Прогнозы становятся настолько точными, что компании выгоднее присылать вам товары, которые вы предположительно захотите купить, чем ждать, пока вы закажете их на сайте.
В таком случае другие магазины вам уже не нужны, а каждая покупка будет стимулировать следующую. Amazon получит основную долю содержимого вашего кошелька. Очевидно, что это выгодно Amazon, но также удобно и вам. Магазин доставляет покупки до того, как вы их совершили, и таким образом избавляет вас от траты времени на шопинг. С поворотом регулятора точности на максимум бизнес-модель Amazon меняется с «покупка – затем доставка» на «доставка – затем покупка».
Разумеется, покупатели не захотят возиться с возвратом нежелательных товаров. Поэтому Amazon вложится в отладку этого процесса – скажем, раз в неделю служба доставки будет собирать невостребованные посылки [12] Amazon уже работает над потенциальными проблемами безопасности по этому плану. В 2017 году она запустила Amazon Key – систему, позволяющую доставщикам открыть входную дверь клиента и оставить посылку внутри помещения. Происходящее записывается на видеокамеру для контроля.
.
Но если такая бизнес-модель лучше, почему Amazon до сих пор ее не внедрил? Дело в том, что сегодня издержки сбора и обработки возвратов перевешивают рост дохода от основной доли кошелька. Например, сейчас мы вернули бы 95 % доставленных товаров. Это трудоемко для нас и затратно для Amazon. Для освоения новой бизнес-модели прогнозы пока еще недостаточно точны.
Возможен иной вариант: Amazon обращается к новой стратегии до того, как точность прогнозов достигнет качественного уровня, исходя из предположения, что однажды это принесет выгоду. Благодаря раннему запуску ИИ соберет больше данных за короткий срок и усовершенствуется. В Amazon понимают, что чем раньше они стартуют, тем сложнее будет конкурентам их нагнать. Качественный прогноз привлечет больше покупателей, что увеличит объем данных для обучения ИИ и, в свою очередь, приведет к повышению качества прогнозов, а далее этот цикл неоднократно повторится. Раннее внедрение обойдется дорого, но опоздание может стать роковым [13] Любопытно отметить, что некоторые стартапы уже мыслят в этом направлении. Stitch Fix использует машинное обучение для прогнозирования, какая одежда понравится пользователям, и отправляет им посылку. Затем нежелательные вещи возвращают. В 2017 году Stitch Fix успешно провел первичное публичное размещение акций по этой модели – вероятно, первым из всех «ориентированных на ИИ» стартапов.
.
Мы не утверждаем, что Amazon будет или должен внедрять такую практику, хотя для скептиков у нас есть неожиданная новость: в 2013 году Amazon получил патент США на «опережающую доставку» [14] См. US Patent Number 8,615,473 B2; Kopalle, P. Why Amazon’s Anticipatory Shipping is Pure Genius // Forbes. 2014. January 29 // https://www.forbes.com/sites/onmarketing/2014/01/28/why-amazons-anticipatoryshipping-is-pure-genius/#2a3284174605 .
. Несомненно, вращение регулятора точности прогнозов коренным образом повлияет на стратегию. В данном примере оно меняет бизнес-модель Amazon с «покупка – затем доставка» на «доставка – затем покупка», создает стимул для вертикальной интеграции посредством организации услуги по возврату товаров (в том числе грузового автопарка) и ускоряет процесс инвестирования. И все это вследствие поворота регулятора точности прогностической машины.
Что это означает для стратегии? Во-первых, необходимо инвестировать в сбор информации относительно того, как быстро и насколько высоко вырастет точность прогнозов в вашем и в смежных секторах. Во-вторых, разработка тезиса о стратегических возможностях, образовавшихся в результате вращения регулятора точности, потребует финансовых вложений.
Чтобы начать «научное фантазирование», закройте глаза, мысленно возьмитесь за регулятор прогностической машины и, следуя бессмертным словам члена группы Spinal Tap [15] Spinal Tap – вымышленная британская рок-группа из одноименного псевдодокументального фильма 1984 года. Прим. перев.
, поверните его на 11 часов.
План книги
Прежде всего необходимо построить фундамент для стратегического внедрения прогностических машин в своей организации. Именно так мы структурировали книгу – возводили пирамиду от основания.
В части Iмы заложим фундамент и объясним, как машинное обучение повышает качество прогнозов. Затем разберемся, чем новые преимущества отличаются от статистики, которой вас учили или которой уже занимаются ваши аналитики. Далее мы затронем ключевые дополняющие факторы прогнозов – данные, особенно те, что необходимы для качественной прогностики, – и расскажем, как убедиться, что они у вас есть. И в завершение рассмотрим, когда прогностические машины работают эффективнее человека и в каких случаях людям и машинам целесообразно объединить усилия для получения максимально точных прогнозов.
В части IIмы опишем роль прогнозов в качестве вводных для принятия решений и объясним значение еще одной составляющей, пока недооцененной в сфере ИИ, – суждений. Прогнозы помогают принимать решения, снижая неопределенность, а суждения определяют ценность. В экономической терминологии суждением называется определение окупаемости, целесообразности, дохода и прибыли. Самое значительное свойство прогностических машин состоит в том, что они повышают ценность суждения.
В части IIIперейдем к практике. Прогностические машины оснащены инструментами ИИ в соответствии с конкретными задачами. Мы опишем шаги, помогающие определить, когда создание (или покупка) инструментов ИИ максимально повысит доход. Иногда такие инструменты идеально укладываются в рабочий процесс, но бывает, что побуждают изменить его. Также мы познакомим вас с важным подспорьем для уточнения ключевых требований к инструментам – «шаблоном ИИ».
В части IVвернемся к стратегии. Как в описанном нами эксперименте с Amazon, иногда ИИ настолько масштабно влияет на экономику задачи, что преобразует компанию или промышленность. Тогда он становится краеугольным камнем стратегии организации. В результате воздействия на стратегию ИИ переключает на себя внимание высшего руководства помимо менеджеров продукта и инженеров.
Как правило, заранее предусмотреть степень влияния ИИ на стратегию нельзя. Например, немногие, опробовав инструменты поиска Google, предсказывали, что они преобразуют медиаиндустрию и лягут в основу самых успешных компаний планеты.
Помимо возможностей получения прибыли ИИ несет системные риски, способные повлиять на бизнес. Все сосредоточены на рисках ИИ для человечества, но мало кто обращает внимание на опасность ИИ для организаций. К примеру, некоторые прогностические машины, обучаемые на полученных от человека данных, заодно усваивают ненужные отклонения и стереотипы.
Читать дальшеИнтервал:
Закладка: