Анатолий Дятлов - Чернобыль. Как это было

Тут можно читать онлайн Анатолий Дятлов - Чернобыль. Как это было - бесплатно полную версию книги (целиком) без сокращений. Жанр: История, издательство Научтехлитиздат. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Чернобыль. Как это было
  • Автор:
  • Жанр:
  • Издательство:
    Научтехлитиздат
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.79/5. Голосов: 141
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Анатолий Дятлов - Чернобыль. Как это было краткое содержание

Чернобыль. Как это было - описание и краткое содержание, автор Анатолий Дятлов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Воспоминание участника аварии на Чернобыльской АЭС, которого многие считают её виновником

Чернобыль. Как это было - читать онлайн бесплатно полную версию (весь текст целиком)

Чернобыль. Как это было - читать книгу онлайн бесплатно, автор Анатолий Дятлов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ещё один момент. В Регламенте записано, что при снижении ОЗР менее 15 стержней РР реактор должен быть заглушён. Каким был запас реактивности при 30 МВт – измерить нельзя, устройство замера не годится. Можно было сделать только прикидочный расчёт на основе известных в то время сведений по отравлению, мощностному коэффициенту реактивности. Согласно этому запас реактивности при провале мощности реактора был больше 15 стержней. Значит, нарушения персонал не допустил. Подробнее об этом чуть позднее.

Остановимся на вопросе об уровне мощности. Сразу надо сказать, что ни в одном эксплуатационном, проектном или директивном документе по реактору РБМК нет даже намёка на ограничение работать на какой-то мощности. Да это и не свойственно реакторам. В Регламенте прямо сказано, что длительность работы на минимально контролируемом уровне мощности не ограничивается. Тот же Регламент даёт рекомендацию при отделении энергоблока от электрической системы снизить мощность реактора до величины, обеспечивающей нагрузку механизмов собственных нужд станции, а это те же 200 МВт, за которые нас и обвиняют.

Поэтому нет никакого нарушения со стороны персонала, когда он начал снижать мощность. Кто бы ни распорядился делать это и почему. Я согласился с предложением Саши Акимова поднять мощность до 200 МВт после провала по очень простой причине: до 700 МВт, согласно Регламенту, надо подниматься не менее получаса, а у нас и работы на полчаса, мощность такая не нужна ни для замера вибрации турбины, ни для эксперимента по «Программе выбега ТГ» – по последней реактор вообще глушился. При работе на подводных лодках постоянно приходилось считать пусковое положение органов воздействия на реактивность, если после падения АЗ проходило какое-то время. Приходилось учитывать и отравление ксеноном, и другие эффекты реактивности. На реакторе РБМК с такой точностью расчёт сделать невозможно, но прикинуть вполне допустимо. По моей прикидке, до половины второго снижения запаса реактивности менее 15 стержней быть не могло. И сейчас в этом уверен.

Я же не ожидал подвоха со стороны станционного Отдела ядерной безопасности. Согласно требованиям нормативных документов Отдел периодически проводил измерения характеристик реактора, в том числе таких параметров, как паровой эффект реактивности (αφ) и быстрый мощностной коэффициент реактивности (αN). Вот последние данные, полученные оперативным персоналом для руководства в работе: αφ=+1,29 β и αN = -1,7 * 10-4β/МВт.

После аварии на других блоках станции измерили паровой эффект и получили ни много, ни мало αφ=+5 β. Разница большая, а отсюда и разница в воздействии на запас реактивности при пуске седьмого и восьмого ГЦН и при увеличении расхода питательной воды в сторону уменьшения запаса реактивности.

Мощностной коэффициент реактивности Отдел ядерной безопасности измерял на мощности, близкой к номинальной, возможно, он там такой и был, какой нам выдавали. А как выяснили после аварии, на низких мощностях (с какой начиная, до сих пор Научный руководитель и Главный конструктор – их организации, не уточнили) реактор имел не отрицательный, а положительный мощностной коэффициент, причём так и до сих пор неизвестно какой величины. И при снижении мощности получили не увеличение запаса реактивности на один стержень, а неизвестно какое снижение. Поэтому прогноз изменения запаса оказался ошибочным.

Знали или нет Научный руководитель и Главный конструктор реактора РБМК, что реактор в достаточно большом диапазоне мощности имел положительный мощностной коэффициент реактивности, сказать не берусь. Но что в практике это не учитывалось – точно. Станционный Отдел ядерной безопасности работал под их методическим руководством и, конечно, должен был измерять характеристики в наиболее неблагоприятных областях. Следовательно, Отдел подсказки от научных организаций не получил, а те, что получал, были, мягко говоря, не того качества. Ведь паровой эффект реактивности в 1,29 при действительном в 5 Отдел намерял по их методике.

Создателям реактора было ясно отрицательное влияние большого парового эффекта реактивности на динамические свойства реактора. Вот что пишет в записке следователю Главный конструктор РБМК академик Н.А. Доллежаль:

«В самом начале строительства канальных уран-графитовых реакторов, исходя из уровня знаний того времени (середины 60-х годов), активная зона реактора была спроектирована с использованием урана, обогащённого U –235 в 1,8%. Спустя некоторый срок эксплуатации первого реактора, стала очевидной целесообразность поднятия этого значения до 2 %, что позволило, в частности, в некоторой степени понизить отрицательное влияние парового коэффициента реактивности. Дальнейшее изучение всех параметров, характеризующих работу реактора, привело к выводу о целесообразности повышения обогащения урана до 2,4 %. Такие сборки с активными элементами изготовлены и удовлетворительно проходят представительные испытания на работающих канальных реакторах АЭС.

При создании активной зоны реакторов на этом уровне обогащения урана по всем данным влияние парового коэффициента реактивности локализуется. До этого, т. е. при обогащении урана 2 %, это влияние регулируется постановкой в каналы специальных поглотителей (ДП), что строго и предусматривается в эксплуатационных инструкциях. Отступление от них недопустимо, так как делает реактор « н е у п р а в л я е м ы м» (разрядка моя – А. Д.)

Полагаю, слово «неуправляемым» пояснения не требует. Реактор РБМК-1000 четвёртого блока имел уран 2 % обогащения, ДП в активной зоне не имел, по определению Главного конструктора – неуправляем. Указаний в эксплуатационных инструкциях не было и появиться им неоткуда было – в проектных материалах Главный конструктор сообщить не обеспокоился. В отчёте его НИКИЭТ, озаглавленном «Ядерная безопасность реакторов РБМК вторых очередей. Нейтронно-физические параметры», паровой коэффициент реактивности не превышает 1(3, а мощностной коэффициент отрицательный. Ладно, это расчёты. Жизнь вносит коррективы. Активные зоны реакторов РБМК формировались по расчётам НИКИЭТ. Не указали в проектных материалах. Знали, что в таком виде он неуправляем, и всё же делали.

Именно положительный паровой коэффициент (эффект) реактивности недопустимо большой величины делал положительным мощностной коэффициент реактивности. Чем это плохо?

У критичного реактора мощность удерживается на постоянном уровне. Если теперь каким-то способом (изменение расхода теплоносителя, питательной воды, давления первого контура) внесена положительная реактивность, то мощность начнёт возрастать. В правильно спроектированном реакторе от увеличения мощности вносится отрицательная реактивность (отрицательный мощностной коэффициент), которая скомпенсирует ранее внесённую реактивность, и мощность установится на новом, более высоком уровне. В этом заключается принцип саморегулирования. У реактора РБМК, по крайней мере на малой мощности, мощностной коэффициент оказался положительным. Теперь увеличение мощности реактора вносит дополнительную положительную реактивность, реактор начинает увеличивать мощность с большей скоростью, что вызывает ещё положительную реактивность и создаются условия для разгона реактора. Нельзя говорить, что такой реактор нисколько работать не может. Автоматический регулятор или оператор своими действиями могут удержать реактор от разгона. Но всё это до поры до времени. При достижении избыточной реактивности величины р (доля запаздывающих нейтронов) реактор уже разгоняется на мгновенных нейтронах с очень большой скоростью, и ничто его не может спасти от разрушения. Экзотические исследовательские реакторы в расчёт не принимаются.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Анатолий Дятлов читать все книги автора по порядку

Анатолий Дятлов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Чернобыль. Как это было отзывы


Отзывы читателей о книге Чернобыль. Как это было, автор: Анатолий Дятлов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x