Иван Рожанский - Античная наука

Тут можно читать онлайн Иван Рожанский - Античная наука - бесплатно полную версию книги (целиком) без сокращений. Жанр: История, год 1980. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Иван Рожанский - Античная наука краткое содержание

Античная наука - описание и краткое содержание, автор Иван Рожанский, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге дается популярный очерк более чем тысячелетней истории древнегреческой и римской науки. Характеризуются особенности ранней греческой науки "о природе" и прослеживается постепенное выделение из нее отдельных ветвей - математики, астрономии, биологии. Излагаются важнейшие достижения античной науки в эллинистическую эпоху (III-I вв. до н. э.), анализируются причины и основные этапы ее постепенного упадка во время римского владычества.
Книга рассчитана на широкий круг читателей, интересующихся проблемами истории науки и культуры.

Античная наука - читать онлайн бесплатно полную версию (весь текст целиком)

Античная наука - читать книгу онлайн бесплатно, автор Иван Рожанский
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

где а 2 наибольший целый квадрат меньший N Есть у него правило и для - фото 18

где а 2— наибольший целый квадрат, меньший N. Есть у него правило и для извлечения кубического• корня. Эти и многие другие правила он формулирует без доказательств, лишь поясняя их числовыми примерами.

Менелай Александрийский был математиком совсем иного рода. В области тригонометрии он был продолжателем Гиппарха и написал книгу, ныне утерянную, о вычислении хорд (что эквивалентно вычислению синусов).

Кроме того он заложил основы новой науки — сферической тригонометрии. В арабском переводе до нас дошла его «Сферика», состоящая из трех книг. В двух первых книгах доказываются различные теоремы о сферических треугольниках (между прочим, • теорема о равенстве).

Рис 13 К теореме о трансверсалях Мснелая на плоскости Рис 14 К теореме - фото 19

Рис. 13. К «теореме о трансверсалях» Мснелая на плоскости

Рис. 14. К «теореме на трансверсалях» Менелая на сфере

Третья книга начинается с «теоремы о трансверсалях», состоящей в следующем.

Пусть даны две прямые АВ и АС и на них взяты две произвольные точки D и Е, и пусть CD и BE пересекаются в точке Z (рис. 13). Тогда можно доказать, что между отрезками, получившимся на чертеже, существуют такие соотношения:

Посредством проектирования из центра Менелай переводит эти отношения на сферу - фото 20

Посредством проектирования из центра Менелай переводит эти отношения на сферу (рис. 14) и, если ADB, АЕС, CZD и BZE будут большими кругами сфер, получает отношение для хорд:

Из теоремы о трансверсалях Менелай получает ряд формул сферической - фото 21

Из теоремы о трансверсалях Менелай получает ряд формул сферической тригонометрии.

Доказанная Менелаем «теорема о трансверсалях» нашла потом широкое применение у Птолемея. Вообще вся эта область математики разрабатывалась тогда в качестве математического аппарата для астрономии; тем не менее книга Менелая представляла собой значительное достижение и с чисто математической точки зрения.

Клавдий Птолемей был также несомненно прекрасным математиком, хотя математика интересовала его главным образом лишь как средство для решения астрономических и картографических задач. Но он не чуждался и чисто математической проблематики, о чем свидетельствует то, что им было написано сочинение о параллельных линиях и о пятом постулате Евклида (о чем сообщает Прокл). Текст этого сочинения утрачен и сколько-нибудь детальными сведениями о его содержании мы не располагаем (неоплатоник Прокл приводит якобы птоломеево доказательство пятого постулата Евклида, содержащее грубую ошибку).

Следует отметить, что в «Альмагесте» Птолемеи широко пользуется заимствованной у вавилонян шестидесятеричной системой нумерации, применяя ее не только для дуг круга, но также для отрезков и площадей. Таким образом, «минуты», «секунды» и т. д. становятся у него отвлеченными числами, не связанными с каким-либо определенным видом величины. Любопытно, что в его записи дробей существовал символ о («омикрон»), служивший для обозначения отсутствия одного из шестидесятеричных разрядов. Это — первое появление нуля в европейской математической литературе.

В лице Диофанта , величайшего математика III века н. э., мы встречаемся с представителем нового, алгебраического направления в античной математике, которое не находилось пи в какой связи с традиционной греческой геометрией. В свете новейших открытий в области ориенталистики можно считать вероятным, что корни алгебры Диофанта (так же, как и приближенных формул Герона) восходят к вавилонской математике. К сожалению, мы не располагаем никакими промежуточными звеньями, которые позволили бы нам проследить процесс переноса вавилонских алгебраических методов на эллинистическую почву.

О жизни и личности Диофанта у нас нет никаких сведений, если не считать стихотворной эпиграммы-задачи, из которой следует, что Диофант прожил 84 года. Основное сочинение Диофанта — «Арифметика» — посвящено «достопочтеннейшему Дионисию». Мы знаем, что в середине III в. п. э. епископом Александрии был Дионисий; если в посвящении речь идет именно о нем, то это почти единственное указание на время жизни Диофанта, которым мы располагаем.

«Арифметика» состояла из тринадцати книг, из которых до нас дошли только шесть. Уже само построение «Арифметики» существенно отличается от дедуктивно-аксиоматического способа изложения, принятого в классической греческой математике. «Арифметика» представляет собой собрание задач, которые решаются независимо друг от друга; эти решения подчас бывают очень остроумны, хотя, по видимости, не претендуют на всеобщность. Было бы, однако, неправильно считать, что Диофант не владел общими методами или недооценивал их значения. В первой книге Диофант рассматривает задачи, приводящие к определенным квадратным уравнениям. Судя по всему, он умел решать эти задачи не хуже вавилонян и индийцев, причем в эпоху Диофанта, по-видимому, уже существовала устойчивая традиция решения таких задач.

Начиная со второй книги, Диофант рассматривает главным образом неопределенные уравнения — сначала второго, а потом и более высоких порядков. В Европе нового времени «Арифметика» стала известна в XVI в.; развитые Диофантом методы решения неопределенных уравнений оказали огромное влияние на Виета и Ферма. Эти методы находятся в таком же отношении к позднейшей алгебре и теории чисел, в каком архимедовы методы вычисления площадей и объемов находятся к анализу бесконечно малых.

Для обозначения алгебраических выражений Диофант впервые ввел буквенную символику, сделав тем самым важный шаг вперед как по сравнению с числовой алгеброй вавилонян, так и по сравнению с греческой геометрической алгеброй классического периода. В его сочинении алгебра впервые находит свой собственный, присущий ей язык; правда, этот язык очень отличается от алгебраической символики нашего времени. Так, например, у Диофанте еще нет знака +; если нужно сложить несколько членов, он просто пишет их друг за другом. Для вычитания же у него существует особый символ картинка 22(можно ли рассматривать этот символ как обозначение отрицательного числа, остается неясным). В качестве примера укажем, что выражение

x 3+8x-(5x 2+1)

выглядит в записи Диофанта следующим образом:

Античная наука - изображение 23

Последним выдающимся математиком александрийской школы был Папп, живший в конце III — начале IV вв. Он составил комментарий к «Началам» Евклида, к «Альмагесту» Птолемея и к некоторым другим сочинениям, но его важнейшим трудом был «Математический сборник» («Synagogc»), состоявший из восьми книг, из которых большая часть до нас дошла. В этом сочинении Папп собрал все, что он нашел интересного в трудах свои предшественников; по этой причине «Сборник» является бесценным источником сведений о содержании утерянных книг Евклида, Аполлония и других греческих математиков. Кроме того, в ряде случаев Папп приводит свои собственные результаты, показывающие, что он был не только компетентным компилятором, но и творческим исследователем высокого класса. Наибольшее значение имеют доказанные им теоремы, относящиеся к изучению кривых на торе и других поверхностях. Некоторые теоремы Паппа, вновь доказанные в XVII в. Дезаргом и Паскалем, положили начало проективной геометрии как особой ветви математической науки.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Иван Рожанский читать все книги автора по порядку

Иван Рожанский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Античная наука отзывы


Отзывы читателей о книге Античная наука, автор: Иван Рожанский. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x