Виктор Вайскопф - Наука и удивительное [Как человек понимает природу]
- Название:Наука и удивительное [Как человек понимает природу]
- Автор:
- Жанр:
- Издательство:Наука
- Год:1965
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виктор Вайскопф - Наука и удивительное [Как человек понимает природу] краткое содержание
Наука и удивительное [Как человек понимает природу] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Постараемся понять все колоссальное значение этого открытия. Мы окружены бесконечным множеством веществ, находящихся в различных и даже постоянно изменяющихся формах, с разными свойствами: горячих и холодных, живых и неживых. Несмотря на это колоссальное многообразие, все известные нам объекты состоят только из атомов 92 сортов, причем каждый сорт принадлежит своему, хорошо определенному элементу. Ни в живой, ни в неживой материи нельзя найти ничего такого, что нельзя было бы разложить каким-либо способом на некоторые из 92 элементов. Это открытие обнаружило основную простую черту в строении материи. Мы имеем дело со сравнительно малым числом фундаментальных единиц. Поэтому есть надежда, что принципы, лежащие в основе строения материи, достаточно просты, чтобы их мог понять человек.

Рис. 20. Иллюстрация из книги по металлургии XVI века (гравюра на дереве). Показана доменная печь для плавления медных и свинцовых руд. А, В — две печи, С — передний горн; D — тигель. Мастер стоит около одной из домен и снимает шлак железной вилкой. Е — железная вилка, F — деревянный гребок, которым снимают спекшиеся куски расплавленных пиритов, G — тигель переднего горна, половина его показана открытой на другой печи, Н — половина, выступающая из печи, I— помощник подготовляет горн; последний отделен от печи, чтобы его было лучше видно, К — чушка, L — трамбовка, М лестница, N — черпак.
Строение атомов
Очень важно больше узнать о строении самих атомов. Надо выяснить, что же существует в 92 различных формах и наделено способностью соединяться, образуя самые разнообразные известные нам вещества; мы должны понять, почему определенные комбинации элементов возможны, а другие — нет, и наконец, мы должны попытаться выяснить, откуда произошли столь высоко организованные системы, как живая материя.
Атомы 92 видов обладают весьма различными свойствами. В обычных условиях одни из них образуют газы, другие — металлы; некоторые, например атомы углерода, способны легко соединяться с другими атомами и образовывать скелет целого ряда химических соединений, тогда как другие, например атомы гелия, неона, аргона, почти никогда не дают соединений. Несмотря на такие различия, атомы имеют примерно одинаковую величину. Это можно показать следующим способом.
Если известно атомное строение молекулы вещества, то легко определить, сколько атомов содержится в данном количестве вещества. Вспомним, что 1 моль воды содержит 6,03·10 23молекул и что это количество занимает около 18 см 3.Так как молекула воды состоит из трех атомов (два атома водорода и один атом кислорода), то в 1 моле содержится 18 10 23атомов. Следовательно, в 18 см 3воды [29] Автор относит все найденные им числа к одному кубическому дюйму, т. е. к 18 см 3 . ( Прим. перев .).
содержится примерно это число атомов. Мы получим аналогичное, но несколько меньшее число атомов в равном объеме горной породы: 1 моль кварца занимает 24 см 3. Одна молекула кварца тоже состоит из трех атомов — одного атома кремния и двух атомов кислорода. Поэтому в строго равном объеме (18 см 3) содержится 3/4 18 10 23атомов, т. е. 13,5 10 23атомов. Беря даже столь различные вещества, как золото, дерево или углерод, мы всегда получаем для числа атомов, содержащихся в 18 см 3, величину, лежащую между 10·10 23и 25·10 23. Так как в жидких и твердых телах молекулы плотно упакованы и внутри молекул атомы тоже плотно упакованы, мы заключаем, что все атомы имеют примерно одинаковый размер: в объеме 18 см 3помещается от 10·10 23до 25·10 23атомов, т. е. диаметр атома приблизительно равен 10 -8 см . Что мы знаем о внутреннем строении атома? Здесь мы приходим к основному вопросу: механизм, действующий в атоме, должен служить ключом к пониманию свойств окружающих нас объектов. В предыдущей главе мы ясно показали важную роль, которую играют электрические заряды, и установили, что электроны составляют существенную часть атома. Решающий опыт был сделан в 1910 г. Эрнестом Резерфордом, Гансом Гейгером и Э. Марсденом; они выполнили «зондирование» атома альфа-частицами — очень быстрыми, электрически заряженными частицами, испускаемыми некоторыми радиоактивными веществами. Они направляли пучок этих частиц на металлическую пластинку и наблюдали, как и насколько изменится направление движения частиц после их прохождения сквозь металл (рис. 21).

Рис. 21. Схема опыта Резерфорда .
Эти измерения говорят кое-что о том, как распределен электрический заряд в атомах металлов. Если бы он был равномерно распределен по всему атому, то при пролете альфа-частиц сквозь атом они никогда не отклонялись бы заметным образом от своего пути. Если же электрический заряд сосредоточен в определенных точках атома, то, подходя к этим точкам, альфа-частицы должны испытывать сильное отклонение. Здесь стоит провести описание опыта, данное самим Резерфордом:
«…Я хотел бы воспользоваться этим примером, чтобы показать, как часто мы наталкиваемся на факты случайным образом. Я уже давно занимался исследованиями рассеяния альфа-частиц, а д-р Гейгер, работавший в моей лаборатории, изучал это явление во всех деталях. Исследуя тонкие образцы тяжелых металлов, он нашел, что рассеяние. оказывается обычно малым, порядка одного градуса. Однажды Гейгер пришел ко мне и сказал: „Не думаете ли Вы, что молодому Марсдену, которого я учу методике исследований радиоактивности, следовало бы начать небольшую исследовательскую работу?“ Я согласился с ним и сказал: „Почему бы не предложить ему выяснить, могут ли рассеиваться альфа-частицы на большие углы?“ Должен сознаться Вам, что я сам не верил в такую возможность. Действительно, как мы знаем, альфа-частицы — это очень быстрые и массивные частицы с большим запасом энергии, и можно показать, что если бы рассеяние было обусловлено эффектом накопления целого ряда незначительных рассеяний, то вероятность рассеяния альфа-частиц в обратном направлении окажется очень малой. Затем я вспоминаю, что два или три дня спустя Гейгер пришел ко мне очень возбужденным и сказал: „Мы получили несколько альфа-частиц, летящих в обратном направлении…“ Это было самое невероятное событие, когда-либо происходившее в моей жизни. Это было почти столь же невероятно, как если бы при стрельбе 15-дюймовым снарядом по куску бумаги Вас бы ранило рикошетом. Поразмыслив, я понял, что это обратное рассеяние должно происходить в результате одного-единственного столкновения, и когда я произвел вычисления, то увидел, что можно получить эффект такого порядка величины, только если допустить существование системы, в которой большая часть массы атома сосредоточена в маленьком по размеру ядре. Тогда я подумал об атоме с маленьким массивным центром, несущим заряд. Я разработал математический закон, которому должно подчиняться рассеяние, и установил, что число частиц, отклоненных на заданный угол, должно быть пропорционально толщине рассеивающей фольги, квадрату заряда ядра и обратно пропорционально четвертой степени скорости. Эти выводы впоследствии подтвердили Гейгер и Марсден рядом прекрасных опытов» [30] Э. Резерфорд, Развитие теории строения атома, Макмиллан, Нью-Йорк, 1940.
.
Интервал:
Закладка: