Виктор Вайскопф - Наука и удивительное [Как человек понимает природу]

Тут можно читать онлайн Виктор Вайскопф - Наука и удивительное [Как человек понимает природу] - бесплатно полную версию книги (целиком) без сокращений. Жанр: История, издательство Наука, год 1965. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Наука и удивительное [Как человек понимает природу]
  • Автор:
  • Жанр:
  • Издательство:
    Наука
  • Год:
    1965
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Виктор Вайскопф - Наука и удивительное [Как человек понимает природу] краткое содержание

Наука и удивительное [Как человек понимает природу] - описание и краткое содержание, автор Виктор Вайскопф, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В этой небольшой книге автор так осветил все основные разделы современного естествознания, чтобы их понял читатель, лишенный всякой специальной подготовки. Благодаря упрощениям автора, основанным на знании конкретной взаимосвязи всех явлений природы, читатель легко поймет содержание книги. Цель книги состоит в том, чтобы дать общий беглый очерк современных научных представлений о явлениях природы, показать универсальность этих представлений и их значение для человека.

Наука и удивительное [Как человек понимает природу] - читать онлайн бесплатно полную версию (весь текст целиком)

Наука и удивительное [Как человек понимает природу] - читать книгу онлайн бесплатно, автор Виктор Вайскопф
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Данные, полученные нами при изучении струны, справедливы для волн всех видов. Если волны распространяются в ограниченном пространстве, мы видим систему волн определенных типов с рядом частот, характерных для данной системы. На этом основано большинство музыкальных инструментов. В струнных инструментах используются ряды дискретных частот, характерных для колебаний данной струны. В духовых инструментах используются определенные частоты воздушных волн, заключенных в трубе, будь то тромбон или органная труба.

Другой интересный пример таких волн легко увидеть при наблюдении волн на воде, распространяющихся в ограниченном пространстве, например в стакане. Поразительную картину можно обнаружить, наблюдая за поверхностью воды в стакане. В летящем винтовом самолете, когда частота колебаний мотора становится равной одной из возможных частот колебаний воды в стакане, становится заметной специфическая картина поверхностных волн. При изменении частоты дрожания мотора или при изменении количества воды в резонанс с дрожанием приходят другие колебания. Бы увидите колебания с характерными частотами, которые связаны с определенными волновыми картинами.

Вполне возможно рассчитать форму этих картин и предсказать, при каких частотах следует ожидать их появления. Для этого нужно только знать форму и размер стакана и свойства волн на поверхности воды.

Электронные волны и квантовые состояния . Вернемся теперь к электронным волнам. Как можно ограничить в пространстве электронные волны и наблюдать явления, подобные описанным? В любой ситуации, ограничивающей движения электронов, будут ограничены и электронные волны. Такая ситуация возникает, например, тогда, когда электрон находится близко от атомного ядра. Положительный заряд ядра притягивает электрон и мешает ему покинуть область, непосредственно примыкающую к ядру; движение электрона ограничено пространством, близким к ядру. Как это скажется на электронных волнах? Такой вопрос, поставил Эрвин Шредингер в 1926 г., и он же ответил на него.

Ему удалось рассчитать форму и частоты характеристических волновых картин, которые получаются, когда электрон привязан к ядру. Если известна связь между длиной электронной волны и скоростью электрона, это сводится к простой задаче динамики стоячих волн. Результат дает ряд отдельных колебаний, из которых каждое отвечает определенной волновой картине и определенной частоте. Волновая природа электрона сразу же «объясняет», почему электрон в атоме может обладать только определенными формами движения.

Этот результат имеет фундаментальное значение.

Он дает связь между волновой природой электрона и существованием дискретных состояний в атоме. Здесь мы коснулись самого существа природы. Если электрон может двигаться только в ограниченном пространстве вблизи ядра, то его волновые свойства разрешают лишь вполне определенные, заданные формы движения. Поэтому атом не может изменять свое состояние непрерывно, он должен переходить скачком из одного разрешенного состояния в другое.

Атом будет оставаться в состоянии с наименьшей энергией до тех пор, пока он не получит достаточно энергии, чтобы подняться в следующее состояние, как это и наблюдалось в опытах Франка и Герца.

Успех электронно-волновой модели атома особенно замечателен тем, что она позволяет количественно объяснить все детали наблюдаемых фактов. Шредингер сначала решил простейшую задачу о водородном атоме, в котором к ядру «привязан» только один электрон. Он получил ряд колебательных состояний, во всех отношениях отвечающих наблюдаемым квантовым состояниям водородного атома. В частности, частоты колебаний электронной волны в точности соответствуют энергиям квантовых состояний, если воспользоваться при этом знаменитой формулой Планка, связывающей энергию с частотой. Соответствующая энергия Е всегда равна частоте ω (омега), умноженной на постоянное число h , т. е. Е — hω . Число h — это так называемая постоянная Планка [34] h — очень малое число. Если измерять энергию в электроновольтах, а частоту — числом колебаний в секунду, то h = 4·10 -15 . Колебания с частотой 10 15 в секунду соответствуют энергии 4 эв . .

Точность результатов, вытекающих из этого соотношения, почти неправдоподобна! Шредингер вычислил частоты колебаний электронной волны, ограниченной притяжением. Он умножил эти частоты на постоянную Планка и получил — с точностью до последнего десятичного знака — энергии квантовых состояний водорода, разрешенные значения энергетического «банковского счета» водородного атома [35] Каждый, кто знакомится с этим фантастическим открытием, согласится со знаменитым итальянским физиком Энрико Ферми, который в своих лекциях восклицал по этому поводу: «Нет необходимости согласоваться так хорошо!» . Очевидно, что волновая природа электрона должна служить решающим фактором для понимания свойств атома.

Ограничение электронных волн в пространстве обусловливает существование ряда разрешенных состояний и предписанных частот. Если вспомнить соотношение между частотой и энергией, то мы получим ряд состояний с разрешенной энергией. Состояние с наименьшей частотой является важнейшим, потому что оно обладает наименьшей энергией; это нормальное состояние атома. В таком состоянии волновая природа проявляется наиболее отчетливым образом. Ограниченные в пространстве электронные волны в атомах нельзя наблюдать непосредственно. Можно измерить их длину, частоты (точнее, разности между частотами, определяемые как разности энергий) и другие косвенные параметры. Но весьма поучительно видеть изображения электронных волновых картин. Это не фотографии, снять их, как мы дальше увидим, невозможно, а модели, построенные на основании вычислений. На фото V показаны картины электронных волн, или электронные конфигурации, расположенные в порядке возрастания частоты или энергии, для последовательных квантовых состояний электрона, движение которого ограничено притяжением к ядру. Самое низшее, или основное, состояние является вместе с тем и самым простым: чем выше частота, тем сложнее картина. Основное состояние сферически симметрично. Следующие состояния имеют вид «восьмерки». Более высокие состояния обычно имеют более сложный вид, хотя среди них встречаются и относительно простые.

Эти картины чрезвычайно важны как фундаментальные формы по которым строится - фото 35

Эти картины чрезвычайно важны, как фундаментальные формы, по которым строится вещество. Это формы, и притом единственно возможные, которые может принимать «движение» электрона в условиях, господствующих в атоме, т. е. под влиянием центральной силы (притяжение к ядру), связывающей электрон. Следовательно, подобные картины символизируют способ, которым природа связывает все нас окружающее и придает ему форму.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Виктор Вайскопф читать все книги автора по порядку

Виктор Вайскопф - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Наука и удивительное [Как человек понимает природу] отзывы


Отзывы читателей о книге Наука и удивительное [Как человек понимает природу], автор: Виктор Вайскопф. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x