Виктор Комаров - Новая занимательная астрономия
- Название:Новая занимательная астрономия
- Автор:
- Жанр:
- Издательство:Наука
- Год:1983
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виктор Комаров - Новая занимательная астрономия краткое содержание
Для широкого круга читателей, интересующихся современной астрономией.
Новая занимательная астрономия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Представьте себе вертикально расположенную рамку, установленную на подставке и способную вращаться относительно нее вокруг вертикальной оси. В центре рамки на горизонтальной оси укреплена свободно вращающаяся штанга с грузиками на концах. Вот и весь прибор.

Рис. 4. Маятник Пошехонова.
Как же он работает? Действие этого своеобразного маятника основано на законе сохранения момента количества движения.
Момент количества движения — это произведение массы данного тела m на его линейную скорость V и на расстояние R от оси вращения. Но линейная скорость равна произведению R на угловую скорость ω ( V = Rω ).
Итак, N = mωR 2 , где m — величина постоянная.
Теперь допустим, что радиус R уменьшается, т. е. тело приближается к оси вращения. Так как m постоянна, то для того, чтобы произведение ωR 2 не изменилось, должна соответственно увеличиться ω .
Другими словами: с приближением вращающихся масс к оси вращения угловая скорость возрастает.
Обычно в качестве примера приводят вращающегося фигуриста. Выбрасывая руки в стороны или поднося их к груди, он регулирует скорость своего вращения. То же самое может проделать и парашютист во время затяжного прыжка, и космонавт, свободно плавающий в состоянии невесомости в кабине корабля или в открытом космосе.
Вернемся к нашему маятнику. Установим его на неподвижной площадке и заставим центральную штангу вращаться вокруг горизонтальной оси. Штанга будет вращаться до тех пор, пока не остановится вследствие трения в подшипниках. Это на неподвижной площадке.
А теперь пусть подставка равномерно вращается вокруг вертикальной оси, т. е. маятник находится в центре вращающейся площадки. В этом случае картина существенно изменится.
В то время, когда штанга занимает горизонтальное положение, т. е. грузы расположены далеко от вертикальной оси, маятник поворачивается вместе с площадкой. Но в момент, когда штанга придет в вертикальное положение и грузы на ее концах окажутся на оси вращения подставки, угловая скорость вращения рамки относительно вертикальной оси возрастет. И рамка вместе со штангой должна сделать «рывок», обгоняя вращение подставки.
Таким образом, в том случае, если наш маятник находится на вращающейся площадке, будет наблюдаться постепенный поворот плоскости вращения штанги. Нетрудно сообразить, что по этому принципу можно судить о вращении подставки, даже не наблюдая его непосредственно.
А это значит, что описанный нами маятник может быть с успехом применен и для обнаружения вращения Земли. Заметный эффект смещения будет достигаться значительно быстрее, чем у маятника Фуко.
Несколько лет тому назад маятник, о котором идет речь, был построен и установлен в фойе Московского планетария. Он безотказно работал в соответствии с теми соображениями, которые были приведены выше.
Казалось бы, самый верный способ как можно лучше изучить Землю — побывать в каждом ее уголке, проникнуть в ее недра, учесть все явления, происходящие на ее поверхности. Ученые так и поступают.
Но в целом ряде случаев решение земных проблем значительно облегчается, если «оторваться» от нашей планеты и выйти в космос. Если задуматься, то ничего удивительного в этом нет. Вообще, в естествознании действует неписаный закон: если мы хотим изучить какой-либо объект, надо рассматривать не только этот объект сам по себе, но обязательно более широкую область явлений. В частности, выход в космос дает нам весьма убедительное и в то же время наглядное свидетельство вращения нашей планеты. Речь идет о движении искусственных спутников Земли.
На искусственный спутник, движущийся по околоземной орбите, фактически действует лишь сила земного тяготения, которая лежит в плоскости этой орбиты (мы не будем сейчас принимать во внимание отклонения, связанные с тем, что Земля не является идеальным однородным шаром, и некоторые другие тонкие эффекты). Благодаря этому плоскость орбиты спутника за короткие отрезки времени не изменяет своего положения относительно звезд. Если бы земной шар не вращался вокруг своей оси, то спутник при каждом последовательном обороте проходил бы над одними и теми же точками земной поверхности. Но в связи с тем, что Земля вращается с запада на восток, трасса спутника, т. е. проекция его движения на поверхность Земли, непрерывно смещается в направлении к западу.
Как известно, искусственный спутник, движущийся на высоте порядка 200–300 км, затрачивает на один полный оборот вокруг Земли около 90 минут, т. е. около полутора часов. Нетрудно подсчитать, что за это время земной шар успевает повернуться на 22,5°. Протяженность окружности земного экватора составляет около 40 тыс. км. Таким образом, поворот на 22,5° соответствует примерно 2500 км. Следовательно, при каждом обороте спутник пересекает линию экватора на 2500 км западнее, чем при предыдущем. Примерно через сутки, совершив 16 витков вокруг Земли, спутник пройдет над районом запуска.
Вспомним, что при осуществлении группового полета советских космических кораблей «Союз-6», «Союз-7» и «Союз-8» в 1969 г. каждый следующий корабль стартовал приблизительно через сутки после предыдущего.
Над нами звездное небо
Задумывались ли вы над тем, почему в дневное время на небе не видны звезды? Ведь воздух и днем так же прозрачен, как и ночью. Все дело здесь в том, что в дневное время атмосфера рассеивает солнечный свет.
Представьте, что вы находитесь вечером в хорошо освещенной комнате. Сквозь оконное стекло яркие фонари, расположенные снаружи, видны достаточно хорошо. Но слабо освещенные предметы разглядеть почти невозможно. Однако стоит только выключить в комнате свет, как стекло перестает служить препятствием для нашего зрения.
Нечто похожее происходит и при наблюдениях неба: днем атмосфера над нами ярко освещена и сквозь нее видно Солнце, однако не может пробиться слабый свет далеких звезд. Но после того, как Солнце погружается под горизонт и солнечный свет (а с ним и свет, рассеянный воздухом) «выключается», атмосфера становится «прозрачной» и можно наблюдать звезды.
Иное дело в космосе. По мере подъема космического корабля на высоту плотные слои атмосферы остаются внизу и небо постепенно темнеет.
На высоте около 200–300 км, там, где обычно совершают полеты пилотируемые космические корабли, небо совершенно черное. Черное всегда, если даже на видимой его части в данный момент находится Солнце.
«Небо имеет совершенно черный цвет. Звезды на этом небе выглядят несколько ярче и четче видны на фоне черного неба», — так описывал свои космические впечатления первый космонавт Ю. А. Гагарин.
Читать дальшеИнтервал:
Закладка: