Роберт Хейзен - История Земли. От звездной пыли – к живой планете. Первые 4 500 000 000 лет
- Название:История Земли. От звездной пыли – к живой планете. Первые 4 500 000 000 лет
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2015
- Город:Москва
- ISBN:978-5-9614-3691-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роберт Хейзен - История Земли. От звездной пыли – к живой планете. Первые 4 500 000 000 лет краткое содержание
История Земли. От звездной пыли – к живой планете. Первые 4 500 000 000 лет - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Шопф выступил с опровержением, опубликовав в том же номере статью, помещенную рядом со статьей Брейзера. Шопф с коллегами представили новый анализ образцов Apex с их углеродистыми черными вкраплениями, доказывая, что они имеют изотопные свойства и атомную структуру, характерную для биовещества. Он упрямо отстаивал «древнейшие биоокаменелости», хотя отказался от утверждения, что это были микроорганизмы, обладающие фотосинтезом. Как бы то ни было, семена сомнения в правоте Шопфа были посеяны, а в поисках ранних форм жизни были приняты более строгие критерии.
В более поздней публикации Мартин Брейзер и его коллеги из Австралии объявили, что обнаружили «древнейшие окаменелости» – следы микроорганизмов в горном массиве Strelley Pool, сформировавшемся 3,4 млрд лет назад, всего в 35 км от места находок Шопфа, более древних по возрасту, но, как выясняется, сомнительных. Некоторые считают, что на этом можно поставить точку в затянувшемся научном споре.
Самые маленькие окаменелости
Представьте себе, что происходит, когда погибает колония микроорганизмов. Как правило, крошечный мешочек химических веществ, ранее бывший живой клеткой, распадается и рассеивается; крупные биомолекулы распадаются на более мелкие части, в основном на воду и углекислый газ. Самые вкусные куски могут быть съедены другими микроорганизмами, а несъедобные молекулы растворяются в океане, испаряются в атмосфере или застывают в горных породах. Обычно через несколько лет уже ничего не остается, поскольку время безжалостно к таким хрупким микроскопическим остаткам.
При необычных обстоятельствах – например, если мертвые клетки оказываются быстро погребенными, а вокруг нет разрушителя-кислорода и камень не слишком накаляется, – наиболее прочные биомолекулы могут сохраниться, хотя и в измененном виде. Больше всего шансов у молекул с прочной основой из примерно двадцати атомов углерода, иногда связанных в простую длинную цепь (с налипшими по бокам несколькими атомами углерода), иногда в группу колец (наподобие олимпийского символа). Эти биопризнаки представляют собой нечто вроде миниатюрного скелета. Они остаются от гораздо более крупных скоплений действующих молекул, распавшихся и лишенных всего, кроме наиболее устойчивого остова.
Если обнаружить такой молекулярный скелетик в древней осадочной породе и при этом быть уверенным, что он не попал сюда из соседнего, более молодого слоя или вообще из недавно погибших живых клеток (например, от современных приповерхностных микроорганизмов или омертвевшей кожи с вашего пальца), тогда можно заявить об открытии химического ископаемого – окаменелости, т. е. атомов некогда живого микроорганизма. Отсюда и очарование черными вкраплениями, найденными Шопфом в сланцах Apex.
Многие современные специалисты, занимающиеся молекулярной палеонтологией, ведут восхитительную двойную жизнь. Они могут предпочесть суровую стезю полевого геолога, пробираясь по труднодоступной местности, вынося на себе по полсотни килограммов многообещающих образцов горных пород, добытых где-нибудь в забытых Богом закоулках прожаренной солнцем пустыни, промерзшей тундры или горных вершин. Год за годом небольшие группы отправляются в Западную Австралию, Южную Африку, Гренландию или Центральную Канаду в поисках все новых и новых образцов. Могут трудиться на буровых установках в надежде добраться до древнейших пород, не затронутых ни климатом, ни растительностью. Эти экспедиции нередко сулят многие месяцы трудностей, опасностей и лишений.
Такая полная приключений жизнь контрастирует с месяцами скучного анализа, проводимого в стерильных лабораториях, где малейший вздох или отпечаток пальца могут необратимо испортить драгоценный образец породы трехмиллиардолетней давности. Это требует времени и терпения, исключительной точности и целого арсенала сложнейших приборов – и все ради нескольких молекул, извлекаемых из добытых образцов породы. Среди самых известных представителей этого искусства XXI в. можно назвать австралийского палеонтолога Роджера Саммонса, работающего в MIT на кафедре естествознания Земли и планет. Там он возглавляет Лабораторию Саммонса – чокнутую команду, состоящую из дюжины охотников за окаменелыми молекулами в древнейших породах нашей планеты.
Лет десять назад, работая в Австралийском национальном университете, Саммонс возглавил группу ученых, которые прославились тем, что исследовали любопытные осадочные породы в Пилбара-Кратоне на западе Австралии, горном массиве, сформировавшемся примерно 2,7 млрд лет назад. Там они получили доступ к уникальной скважине глубиной около километра, в которой обнаружился слой черного глинистого сланца, богатого углеродом, – именно в таких отложениях есть шанс обнаружить молекулярные фоссилии. Горные породы Пилбара вызывали особый интерес, поскольку они сохранились в неприкосновенности от воздействия тепловой энергии, грунтовых вод и каких-либо видов жизни на поверхности. Если когда-либо существовала порода, в которой могли сохраниться биомолекулы, они нашли именно ее.
Австралийские исследователи сосредоточили внимание на гопаноидах, превосходном виде твердых биомолекул, о которых говорится в главе 6. Гопаноиды играют важную роль в стабилизации защищающих клетку мембран и, поскольку они чрезвычайно редко встречаются вне живых клеток, являются наиболее надежными признаками живых молекул. В каждом гопаноиде есть характерный каркас из пяти связанных колец – четыре миниатюрных шестигранника (по шесть атомов углерода в каждом) и замыкающий пятиугольник (с пятью атомами углерода). Каждое такое кольцо имеет по два общих атома углерода с соседним кольцом, что вместе составляет двадцать один атом углерода на весь каркас.
Скрупулезные исследования Саммонса в австралийской лаборатории вызвали к жизни две выдающиеся статьи, опубликованные в августе 1999 г. Первая появилась в журнале Science (открывал список авторов аспирант Саммонса Джокен Брокс) и описывала обнаружение в древних породах Пилбара возрастом 2,7 млрд лет особого класса молекул, называемых стеранами, впоследствии признанных древнейшими молекулярными окаменелостями, побившими прежний рекорд на целый миллиард лет.
Обнаружение стеранов может пролить свет на древние экосистемы, поскольку разные породы используют разные типы стеранов с дополнительными атомами углерода, налипающими в различных местах вокруг колец. Брокс и его команда предположили, что стераны из Пилбара свидетельствуют о существовании в то время продвинутого вида клеток, называемых эукариотами: это клетки, имеющие ядро, которое содержит ДНК. Ко времени опубликования этой статьи древнейшая из известных ископаемых эукариот имела возраст один миллиард лет, в то время как примитивные микроорганизмы, существовавшие, как считалось, около 2 млрд лет назад, не имели ядра, так что это предположение поразило, если не сказать вызвало откровенное недоверие у научной общественности. Если это открытие верно, то из него следуют только два вывода. Либо эукариоты появились намного раньше, чем считалось до того (и соответственно эволюция жизни ускорилась), либо стераны возникли гораздо раньше эукариот. В любом случае наши взгляды на происхождение жизни подлежали пересмотру.
Читать дальшеИнтервал:
Закладка: