Роберт Хейзен - История Земли. От звездной пыли – к живой планете. Первые 4 500 000 000 лет
- Название:История Земли. От звездной пыли – к живой планете. Первые 4 500 000 000 лет
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2015
- Город:Москва
- ISBN:978-5-9614-3691-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роберт Хейзен - История Земли. От звездной пыли – к живой планете. Первые 4 500 000 000 лет краткое содержание
История Земли. От звездной пыли – к живой планете. Первые 4 500 000 000 лет - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В неприветливых, засушливых просторах Сахары или голубых льдах Антарктиды любой камень выглядит как чужеродное тело, упавшее с неба. Такие чистейшие образцы метеоритов дают ученым представление о начальных стадиях формирования Солнечной планетной системы, в которой возникла и Земля. Девять десятых всех находок составляют хондриты; оставшаяся часть состоит из разнообразных ахондритов, возникших в начальную эпоху формирования Солнечной системы из вращающегося газово-пылевого облака, продолжавшуюся несколько миллионов лет, в течение которых хондриты склеивались во все более и более крупные тела – планетезимали [1] Теория формирования планет, включающая так называемую «гипотезу планетезималей», была предложена советским астрономом В. Сафроновым и в настоящее время поддерживается большинством астрономов мира. – Прим. ред.
. Вначале они были размером с кулак, затем – с автомобиль, а впоследствии достигли размеров небольшого города. Миллиарды таких тел диаметром несколько километров и больше отвоевывали для себя пространство в пределах узкого кольца вокруг новорожденного Солнца.
Они становились все больше и больше и достигали размеров целых штатов – сначала Род-Айленда, потом Огайо, Техаса, Аляски. Когда появились тысячи таких хаотически увеличивающихся планетезималей, наступила следующая стадия. Достигая более 80 км в диаметре, два одинаково раскаленных тела соединялись. Гравитационная энергия от столкновения малых тел по интенсивности не уступала ядерной энергии при быстром распаде таких радиоактивных элементов, как гафний или плутоний. Возникшие при этом температуры приводили к трансформации минералов в таких планетезималях, их внутренние области плавились, образуя зоны различных минералов, напоминающие структуру яйца: плотное металлическое ядро (аналогичное желтку в яйце), мантия, состоящая из силиката магния (белок яйца), и тонкая, ломкая кора (яичная скорлупа). Самые крупные из таких планетезималей формировались под влиянием внутренней тепловой энергии, взаимодействия с водой и постоянных столкновений в перенаселенном околосолнечном пространстве. В результате динамических процессов формирования планет, по-видимому, и образовались три сотни различных минеральных веществ. Эти три сотни минералов и послужили сырьем для формирования твердотельных планет, все эти вещества до сих пор обнаруживаются в падающих на Землю метеоритах.
Время от времени две достаточно крупные планетезимали сталкивались с такой силой, что разлетались на осколки. (Этот бурный процесс до сих пор продолжается в поясе астероидов за Марсом, вследствие гравитационного воздействия гигантской планеты Юпитер.) Соответственно большая часть разнообразных ахондритов, которые мы находим теперь, является осколками таких разрушенных планетезималей. Исследование ахондритов напоминает, таким образом, урок анатомии на примере разъятого на части трупа. Требуется много времени, терпения и множество образцов, чтобы представить ясную картину целого тела.
Легче всего анализировать плотные металлические ядра таких планетезималей, представленных в виде железных метеоритов. Когда-то считалось, что это самый распространенный тип метеоритов, однако большая выборка антарктических образцов позволила выяснить, что железные метеориты составляют весьма скромную долю – 5 % всех выпадений. Соответственно ядра планетезималей должны были отличаться небольшими размерами.
Мантии планетезималей, богатые кремниевыми солями, напротив, представлены в большом разнообразии: говардиты, эвкриты, диогениты, урейлиты, акапулькоиты, лодраниты и т. д. – все они отличаются характерной структурой, текстурой и минералогическим составом и названы по местности, в которой найден первый соответствующий образец. Некоторые из этих метеоритов аналогичны горным породам, существующим на Земле в наше время. Эвкриты представляют собой одну из типичных разновидностей базальта – горной породы, которая обязана своим происхождением вулканической деятельности Срединно-Атлантического хребта и выстилает океаническое дно. Диогениты, состоящие преимущественно из силиката магния, по-видимому, являются результатом оседания кристаллов в крупных подземных резервуарах магмы. По мере охлаждения магмы кристаллы становились плотнее окружающей расплавленной среды, росли и опускались на дно, образуя концентрированную массу, аналогичную той, которая образуется в наше время глубоко под землей в магматических камерах Земли.
Иногда, во время особенно разрушительных столкновений метеорит мог захватить частицы силикатных соединений из пограничной зоны между ядром и мантией планетезимали, где силикаты соединены с металлами. В результате появлялся прекрасный палласит – потрясающее сочетание блестящего металла и золотистых кристаллов оливина. Шлифованный срез палласита, где блики сверкающего металла на фоне оливина выглядят словно витражи, выделяют его среди самых красивых образцов в мировом собрании метеоритов.
Под воздействием гравитации ранние хондриты соединялись в группы, и сокрушительное давление, высокие температуры, агрессивная вода и жесткие столкновения преобразовывали планетезимали, создавая все новые виды минеральных веществ. В целом во всех образцах метеоритов обнаружено более 250 различных минералов – в 20 раз больше досолнечных протоминералов. Эти разнообразные твердые вещества, включающие раннюю мелкую пыль, пластины слюды и полудрагоценный цирконий, послужили основным строительным материалом для формирования Земли и других планет. Планетезимали разрастались по мере того, как самые крупные из них поглощали более мелкие. В результате этого поглощения несколько дюжин крупных каменных шаров, каждый величиной с небольшую планету, подобно гигантским пылесосам, подчищая на своем пути внутри Солнечной системы значительную часть пыли и газа, срастались между собой и выравнивали свои орбиты до почти идеальных окружностей. Расположение орбит в значительной мере зависело от массы планет.
Сборка Солнечной системы
Солнце, составляя львиную долю общей массы Солнечной системы, занимает в ней господствующее положение. Сама по себе наша система не принадлежит к числу особо массивных, т. е. Солнце является звездой скромных размеров, что весьма благоприятно для планеты, на которой есть жизнь. Удивительно, но чем больше масса звезды, тем короче ее жизнь. Сверхвысокие температуры и давление внутри больших звезд ускоряют процесс ядерного синтеза. Таким образом, звезда, в десять раз превышающая по массе Солнце, завершает свой цикл в сотни раз быстрее – ее существование длится не более нескольких десятков миллионов лет, что едва ли достаточно для возникновения жизни на одной из ее планет до того, как звезда взорвется, превращаясь в смертоносную сверхновую. И наоборот, какой-нибудь красный карлик, массой в десять раз меньше Солнца, существует в сотни раз дольше, но при этом его слабое излучение может оказаться недостаточным для поддержания жизни на планете, в отличие от нашего желтого благодетеля – Солнца.
Читать дальшеИнтервал:
Закладка: