Юрий Мухин - Лунная афера США
- Название:Лунная афера США
- Автор:
- Жанр:
- Издательство:Яуза, Эксмо
- Год:2006
- Город:Москва
- ISBN:5-9764-0011-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Мухин - Лунная афера США краткое содержание
В книге приводятся «доказательства», которыми империя зла — США пытается одурачить мировое сообщество, уверяя, что американские космонавты якобы высаживались на Луну в 1969-1972 гг. Правящий режим США разворовал деньги, выделенные американскими налогоплательщиками для полётов на Луну, а сцену «высадки на Луну» снял на Земле режиссёр Стенли Кубрик.
Показано, что эта афёра не могла бы быть осуществлена, если бы не помощь ЦК КПСС и некоторых подлых представителей советской науки.
Лунная афера США - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Итак, основы фотографии. Фотоплёнка при попадании на неё света чернеет. Почернение тем больше, чем больше так называемая экспозиция — количество света, попавшее на неё, то есть освещённость плёнки, умноженная на время освещения. H=Et, где Н — экспозиция, Е — освещённость, t — время освещения. Грубо говоря, если экспозиция меньше некоего минимального порогового значения, то почернения нет, если же больше максимального порогового — то плёнка больше не почернеет (и так полностью почернела, дальше некуда — а в некоторых случаях при очень сильной передержке может даже несколько посветлеть, этот эффект называется соляризацией). Интервал экспозиций, в котором плёнка правильно воспроизводит изображение, называется фотографической широтой.

Зависимость почернения фотослоя от экспозиции.
По горизонтальной оси отложена экспозиция H, по вертикальной — степень почернения d (обе величины — в логарифмическом масштабе).
H < H0 — область вуали.
H0 < H < H1 — область недодержек.
H1 < H < H2 — область нормальных экспозиций.
H > H2 — область передержек и соляризации.
В фотоаппарате для регулирования количества света, попадающего на плёнку, изменяется и время съёмки, то есть время, на которое открывается затвор (выдержка), и освещённость плёнки. Для регулирования освещённости в объектив вмонтирована так называемая диафрагма — металлические лепестки, которые могут сходиться или расходиться, изменяя количество проходящего через объектив света. Аналогичное устройство имеется в человеческом глазу — зрачок, который при ярком свете сужается.
Если мы фотографируем объект с очень большим диапазоном яркостей, то может получиться, что очень сильно освещённые участки кадра уйдут в область передержек, то есть на снимке (на позитиве) будут полностью белыми, без каких-либо деталей, а слабо освещённые останутся в области недодержек, то есть на снимке будут совершенно чёрными. Поэтому такие высококонтрастные сюжеты очень трудно снимать. В студии тени подсвечивают специальными слабыми источниками света (заполняющий свет), чтобы в тенях появились детали. (Зайдите в фотостудию и закажите портрет. Как минимум, там будет два источника света: один, сильный, освещает лицо сбоку и создаёт рельеф лица на изображении (рисующий свет), другой, послабее, освещает лицо со стороны аппарата и создаёт освещённость в тенях, снижая контраст изображения. А любительские портреты со вспышкой выглядят несколько плоскими и безжизненными, потому что вспышка освещает лицо от аппарата и теней на нём нет.)
Если же то, что мы снимаем, контрастно и подсветить тени нельзя, то это — очень сложный объект для съёмки. Например, мы стоим в туннеле, фотографируем выход из него и хотим, чтобы получились и объекты в туннеле, и освещённый солнцем пейзаж. Тут надо тщательно измерить яркости объектов в туннеле и яркости пейзажа и так выбрать сочетание выдержка диафрагма, чтобы яркости «влезли» в тот интервал, который может передать плёнка. В таких случаях фотографы делают ещё и «вилку» — снимают три раза: один с расчётной выдержкой и диафрагмой, другой — увеличив выдержку относительно расчётной (или приоткрыв диафрагму) и третий — наоборот, чтобы потом выбрать наилучший снимок, в котором яркости объектов наилучшим образом «вписываются» в воспроизводимый плёнкой диапазон яркостей. Впрочем, если диапазон яркостей в кадре слишком велик, то всё равно ничего не получится.
И наконец, на Луну. Лунные камни и астронавты освещены Солнцем не хуже, чем сочинский пляж летом в ясный день. Современные аппараты сами определяют освещённость объекта съёмки и отрабатывают соответственно этому выдержку и диафрагму, но тот, кто фотографировал старыми камерами, где выдержку и диафрагму надо было ставить вручную, знает, что для съёмки в таких условиях нало ставить самую короткую выдержку, которая есть у затвора (одна пятисотая или одна тысячная доля секунды), да ещё довольно сильно задиафрагмировать объектив. Абсолютно чёрное небо с крохотными точечками звёзд при такой выдержке, конечно, «не проработается» — звёзды на снимке видны не будут. Чтобы они появились на фотографии, надо полностью открыть диафрагму и дать выдержку в несколько десятков секунд — но при этом всё остальное уйдёт на плёнке далеко в область передержек и на снимке будет полностью белым без каких-либо деталей. (Эффектные фотографии в учебниках астрономии, где звёзды описывают круги вокруг полюса, получают, как нетрудно понять, делая выдержку в час (!) или ещё больше.) В общем, фотографическая широта плёнки недостаточна, чтобы одновременно проработать и освещённые прямым солнечным светом объекты, и звёзды. Либо то, либо это.
А теперь давайте оценим яркость звёзд и объектов на снимках NASA. Отношения максимальной и минимальной яркостей объектов на снимках с Луны — более 100000. Визуальная звёздная величина Луны: -12.73, визуальная звёздная величина наиболее яркой звезды — Сириуса, равна -1.58. Отношение яркостей для звёзд считается на основе формулы Погсона: lg E2/E1=0,4(m1-m2). Для Луны и Сириуса в логарифмическом масштабе получим 4,46 или более 28800. Фотоплёнок с такой фотографической широтой нет (по крайней мере, у астронавтов на Луне не было.)
Менее утешительный результат получится, если сравнивать яркость объектов на поверхности Луны всё с тем же Сириусом. По справочнику [3] табл.111 находим яркость Луны 2500 кд/м², откуда (по формуле Погсона) яркость Сириуса около 0,18 кд/м². Освещённость, создаваемая Солнцем вне атм. Земли на удалении 1 а.е. в среднем 127 000 лк ([1] с. 1200); яркость листа белой бумаги (коэфф. диффузного отражения 0.6-0.7) при освещённости 30-50 лк будет 10-15 кд/м² ([3] табл.111). Поэтому на поверхности Луны яркость листа бумаги (в худшем случае 50/10) =127000лк/50лк x 10 = 25400 кд/м². Скафандры астронавтов должны быть примерно такой яркости. Отношение яркостей 25400/0.18=141111 (5.15 в логарифмическом масштабе).
Ладно, берём лунный грунт. Альбедо Луны 0,067 (близко к коэфф. отражения почвы по спр. [3]), т. е. в 10 раз меньше, чем у бумаги. Возвращаемся всё к тем же 2500 кд/м² (это в худшем случае, реально грунт ярче).
На фотографиях лунная поверхность видна во всех полутонах, следовательно, попала в диапазон оптимальных экспозиций. Это означает, что Сириусу с его яркостью ничего не светит. Если Видны звёзды, то астронавты с луной — в области соляризации фотоэмульсии.
Даже если… Отрицательную звёздную величину имеют ещё только Канопус (-0,89) и некоторые планеты (например, Марс может иметь яркость до — 2). А всего звёзд с яркостью <1 только 24 по всему небосводу. Максимальная фотографическая широта светочувствительных материалов — 4 (крутая экзотика, но всё равно мало).
Читать дальшеИнтервал:
Закладка: