Стивен Оппенгеймер - Изгнание из Эдема
- Название:Изгнание из Эдема
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2004
- Город:М.
- ISBN:5-699-06718-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Оппенгеймер - Изгнание из Эдема краткое содержание
Люди на протяжении многих веков пытались разгадать загадку своего про исхождения: кто мы, сыны Адама и дочери Евы?
Известный американский антрополог Стивен Оппенгеймер дает свое сенсационное обоснование происхождению и развитию человечества. Основываясь на теории митохондриевой ДНК (целого набора генов в пределах одной клетки), он реконструировал два семейных генетических древа: одно — наших отцов и другое — наших матерей-прародительниц. Наложив это разветвленное генное древо на карту мира, он проследил, каким путем, обживая неведомый древний мир, прошли наши далекие предки, оставляя цепочки генов. Эти новые знания позволяют заполнить пробелы и устранить неточности в хронологии развития нашей цивилизации. Так далеко еще не удавалось заглянуть ни одному исследователю.
Изгнание из Эдема - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
При половом размножении ДНК родителей копируется и передается эмбриону в равных пропорциях. Важно понимать, что, хотя большая часть ДНК каждого из родителей при воспроизводстве передается потомкам по отдельности, небольшие фрагменты генов каждого из них в каждом поколении перемещаются и перемешиваются друг с другом. Однако подобное смешение — это отнюдь не произвольное массовое смешение генов, постулированное Менделем, а крохотные взаимопереходы, дублирование, выбросы и обмен между материнской и отцовской составляющими ДНК их ребенка. Это явление обозначается специальным техническим термином — рекомбинация [46]. К счастью для исследователей ДНК, существуют два небольших участка нашей ДНК, которые никогда не подвергаются рекомбинации. По фрагментам спирали ДНК, не подвергшимся рекомбинации, гораздо удобнее изучать признаки вида в далеком прошлом, поскольку информация, заключенная в ней, не претерпевает искажений при передаче от поколения к поколению. Эти два фрагмента спирали ДНК получили название митохондриевой ДНК и нерекомбинированной части Y-хромосомы.
Было бы не совсем правильно утверждать, что ровно половину нашей ДНК мы получаем от своего отца, а вторую, точно такую же половину, — от матери. Дело в том, что существует крошечный фрагмент ДНК, который передается только по материнской линии. Это так называемая митохондриевая ДНК, поскольку она содержит уникальный круглый виток в небольших трубкообразных «пакетах», так называемых митохондриях, которые функционируют как своего рода батарейки в цитоплазме клеток. Некоторые специалисты по молекулярной биологии утверждают, что в древнейшую эпоху развития жизни на Земле митохондрия представляла собой отдельную, независимую особь со своей собственной спиралью ДНК и обладала секретом выработки громадных масс энергии. Впоследствии митохондрии проникли в простейшие одноклеточные организмы и навсегда остались в них, размножаясь, как дрожжи, посредством бинарного деления клеток. Особи мужского пола, хотя они получают и используют митохондриевую ДНК своей матери, не способны передавать ее своему потомству. Мужская сперма имеет свои собственные митохондрии, помогающие ей проделать длительный путь от вагины до яйцеклетки, однако в процессе проникновения в яйцеклетку мужские митохондрии разрушаются и гибнут. Образно говоря, мужчина подобен воину, вынужденному оставить оружие у входа в вечность.
Таким образом, каждый из нас наследует митохондриевую ДНК своей матери, которая унаследовала свою митохондриевую ДНК от своей матери, и так далее, на протяжении бесчисленного ряда поколений, вплоть до Евы. Отсюда и популярное название митохондриевой ДНК — «ген Евы». Таким образом, каждый человек, живущий сегодня на Земле, унаследовал свою митохондриевую ДНК от одной-единственной прапрапрабабки, жившей на Земле примерно 200 тысяч лет назад. Эта митохондриевая ДНК представляет собой уникальный момент стабильности среди зыбких песков наследственности ДНК. Однако если все хромосомы Евы, существующие сегодня в мире, были бы абсолютно точной копией генов ДНК Евы, то и все их носители были бы совершенно одинаковыми двойниками. Это было бы поистине чудом и в то же время означало бы, что митохондриевая ДНК не способна передать нам информацию об истории нашей собственной эволюции. Хотя осознание того факта, что родословную всех женщин на свете можно проследить в ретроспективе вплоть до их общего предка — праматери Евы, само по себе выглядит впечатляющим, это не позволяет сколько-нибудь подробно проследить генеалогические линии ее дочерей. Для этого нам необходим более широкий спектр вариантов.
Итак, самое время поговорить о мутациях ДНК. Когда мы наследуем от своей матери митохондриевую ДНК (мтДНК), иногда в ней бывает запечатлено случайное изменение или мутация в одном или нескольких «знаках» кода мтДНК — примерно одна мутация на каждую тысячу поколений [47]. Этот новый знак, так называемая точечная мутация, будет передаваться через всех последующих дочерей женщины, у которой она возникла. И хотя новая мутация — явление крайне редкое в пределах генеалогической линии одной семьи, общая вероятность мутаций увеличивается прямо пропорционально числу матерей, имеющих дочерей. Таким образом, в следующем поколении у одного миллиона матерей может быть уже более тысячи дочерей с новой генетической мутацией, причем каждая из них будет в чем-то отличаться от остальных. Вот почему, даже если у всех нас 10 тысяч лет тому назад был общий предок по женской линии, все мы обладаем генетическим кодом, содержащим пусть небольшие, но вполне реальные отличия от окружающих.
За период примерно 200 тысяч лет ряд крошечных случайных мутаций, постоянно аккумулировавшихся в различных молекулах мтДНК человека, был рассеян дочерями Евы практически по всему свету. Это означает, что в родословных каждого из нас по женской линии вплоть до Евы можно найти от семи до пятнадцати таких мутаций. Таким образом, мутации представляют собой нечто вроде сводных досье нашей генеалогии по женской линии за всю историю существования рода человеческого. Основная задача ДНК — передать свою точную копию следующим поколениям. Поэтому мы можем использовать такие мутации для реконструкции генеалогического древа мтДНК, поскольку каждая новая мутация мтДНК в яйцеклетке потенциальной матери будет с неуклонной точностью передана всем ее потомкам по женской линии. Таким образом, каждая женская родословная линия определяется как древними, так и сравнительно новыми генными мутациями. В результате этого, зная все возможные комбинации мутаций у женщин во всем мире, мы можем с достаточной уверенностью реконструировать генеалогическое древо по женской линии вплоть до праматери Евы
Хотя набросать на обороте конверта генеалогическое древо и изобразить на нем пару-другую последних мутаций — дело, мягко говоря, нетрудное, эта проблема приобретает куда более сложный характер, если речь идет о составлении генеалогического древа всего рода человеческого со многими тысячами всевозможных комбинаций мутаций. Поэтому сегодня для создания такой реконструкции используются мощные компьютеры. Анализируя код ДНК в генетических пробах современных людей и сопоставляя полученные данные с результатами анализа изменений этого кода за многие и многие поколения, биологи могут проследить, как накапливались эти изменения со времен древнейших предков человека. Поскольку мы наследуем мтДНК только по материнской линии, именно эта линия наследственности и представляет собой объективную картину женской половины генеалогического древа рода человеческого.
Читать дальшеИнтервал:
Закладка: