Ирина Радунская - Крушение парадоксов
- Название:Крушение парадоксов
- Автор:
- Жанр:
- Издательство:«Молодая гвардия»
- Год:1971
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ирина Радунская - Крушение парадоксов краткое содержание
Мазеры и лазеры сделались не только орудием техники, но и скальпелем науки. Они помогли обнаружить столько неожиданных явлений, что ученым впору ринуться на штурм самых глубинных свойств материи.
В книге рассказывается о работах академиков Николая Геннадиевича Басова и Александра Михайловича Прохорова в этой области.
Крушение парадоксов - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Нет, Гюйгенс, которого принято считать создателем волновой теории света, сделал только первый шаг. Он даже не попытался объяснить открытое Гримальди явление дифракции — огибание светом препятствий, хотя книга Гримальди «Физико-математический трактат о свете, цветах и радуге» появилась задолго до трактата Гюйгенса.
Волновые идеи уже тогда носились в воздухе, и Гримальди, обнаруживший огибание света вокруг препятствий, не мог обойтись без представления о волнах. Но в его понимании свет не был собственно волнами, он представлял себе свет жидкостью, двигающейся быстро через пространство и прозрачные тела. Воображение рисовало Гримальди, как волны появляются в световой жидкости при ударе ее о края препятствия, что заставляет световую жидкость затекать за препятствия совсем так, как вода в ручье обтекает камни. Гримальди на правах первооткрывателя назвал это явление дифракцией. Оно навсегда осталось в науке, выйдя далеко за пределы оптики и наполнившись совершенно новым содержанием.
Впрочем, не только название, придуманное Гримальди, дожило до наших дней. Гримальди первым составил карту Луны и дал дошедшие до нас имена многим деталям ее видимой поверхности.
Случаю было угодно, чтобы в том же 1665 году, когда вышли в свет и посмертное издание трактата о свете Гримальди, и «Микрография» Гука, окончил Тринитиколледж в Кембридже и получил степень бакалавра фермерский сын, сирота Исаак Ньютон. Уже в студенческие годы замкнутый юноша начал разрабатывать идеи, вознесшие его выше всех естествоиспытателей мира. Он много спорил с Гуком, который иногда стремился доказать, что кое в чем опередил Ньютона. Впрочем, и другие ученые имели основания обвинять Гука в стремлении присвоить чужие достижения. Дискуссии с Гуком привели, в частности, к тому, что Ньютон не публиковал своих работ в области оптики до смерти Гука.
Ньютон считал свет потоком частиц-корпускул. И, тем не менее он лучше всех современников понимал всю важность периодических свойств света. Ведь, наблюдая цветные кольца, которые каждый может увидеть, положив слабовыпуклую стеклянную линзу на плоскую пластинку и измеряя их размеры, Ньютон мог вычислить длины волн, соответствующие различным цветам. Однако Ньютон понимал, что, уподобив волны света волнам звука, нельзя не только объяснить двойного лучепреломления, но и невозможно описать прямолинейное распространение световых лучей. Все это заставило Ньютона прийти к выводу о телесности света и считать свет потоком корпускул.
Но глубокое изучение явления дифракции света и его поляризации при двойном лучепреломлении привело Ньютона к выводу о недостаточности простой корпускулярной теории. И он сделал великий шаг, попытавшись объединить волновые и корпускулярные свойства света в единое явление.
В синтетической теории свет по-прежнему выступал потоком частиц, вылетающих из источника света, но предполагалось, что движение частиц через эфир возбуждает в нем волны. Волны опережают порождающие их частицы и, набегая на препятствия, заставляют частицы искривлять свой путь, огибая препятствия. Частицы, летящие далеко от края препятствия, движутся прямолинейно, не испытывая никакого воздействия.
Такая теория могла объяснить все оптические явления, известные Ньютону. Но он вынужден был отказаться от нее, ибо существование эфира не согласовывалось с наличием солнечной системы. Ньютон не мог понять, почему эфир не препятствует движению планет!
Сегодня, с вершины XX века, нам легко сказать, что проникновение в сущность света — задача, непосильная одному человеку, сколь бы велик он ни был. Однако величие Ньютона проявилось не только в его достижениях, но и в его ошибках. Например, изучив процесс разложения белого света на составляющие его цвета и получив белый свет сведением воедино радужной полоски, Ньютон связал эти явления с одним из типов искажений изображения в линзах. Это искажение — возникновение радужных каемок на краях изображения — казалось ему неустранимым. И... Ньютон создает зеркальный телескоп, свободный от этого недостатка. Зеркальные телескопы и поныне являются наиболее мощными астрономическими приборами.
Исследования хроматической аберрации и история зеркального телескопа позволяют добавить несколько черточек к характеристике личности Ньютона. Бельгийский физик Лукас приобрел известность тем, что, повторив опыты Ньютона по преломлению света в призме, обнаружил численное расхождение своих результатов с ньютоновскими. Ньютон утверждал, что Лукас ошибся, не дав себе труда повторить опыт. Теперь мы знаем, что они пользовались призмами из различных сортов стекла. И нам трудно понять, почему это осталось незамеченным.
Зеркальный телескоп создан Ньютоном целиком на основе собственных исследований и расчетов. Однако не значит, что он был первым. В то время уже существовали достаточно крупные телескопы, совершенно не имевшие линз. А упоминание о зеркальных телескопах встречается еще в трудах Галилея.
Величие Ньютона проявилось и в том, что, сознавая трудность корпускулярной теории, не способной объяснить периодические свойства света, и не имея возможности принять существование эфира, он не занял здесь какой-либо определенной позиции, не пресек, не ограничил авторитетом своего имени дальнейшие исследования.
Но всегда находятся католики, желающие быть святее папы. После смерти Ньютона постепенно забылось, что в последнем издании его «Оптики» он приводит семь аргументов в пользу волновой теории и лишь один против нее. Последователи возвели в абсолют его корпускулярную теорию, и она заняла господствующее положение вплоть до начала XIX века, тормозя развитие науки.
Перелом произошел, когда Юнг возродил волновую теорию для объяснения интерференции, а Френель решил наконец с ее помощью и проблему дифракции.
Томас Юнг начал заниматься физикой и математикой в восьмилетнем возрасте, когда большинство детей лишь начинает знакомиться с азбукой и арифметикой. Через год он приступил к изучению иностранных языков, а также латинского, греческого, древнееврейского и арабского. В это время его главным увлечением стала ботаника. Казалось, мальчика ожидает судьба большинства вундеркиндов — популярность в детстве и быстрое забвение. Но Юнг избежал столь печальной участи. В двадцать лет он опубликовал «Наблюдения над процессом зрения». Здесь на основе своих опытов он поставил под сомнение корпускулярную теорию света, уже, безусловно, отождествлявшуюся с именем Ньютона, и высказался за волновую теорию.
Его дерзость вызвала бурю. Под давлением критики правоверных ньютонианцев Юнг признал необоснованность своих взглядов и на время прекратил занятия оптикой. Он усиленно трудился, готовясь к получению диплома доктора медицины.
Читать дальшеИнтервал:
Закладка: